Files
vllm/tests/kernels/attention/test_cache.py
Yongye Zhu b3230e1ac0 [New Model] DeepSeek-V3.2 (Rebased to Main) (#25896)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Yongye Zhu <zyy1102000@gmail.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Xiaozhu Meng <mxz297@gmail.com>
Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-09-30 22:36:24 -07:00

1060 lines
40 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import random
import pytest
import torch
from tests.kernels.utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
COPYING_DIRECTION = [('cuda', 'cpu'), ('cuda', 'cuda'), ('cpu', 'cuda')]
DTYPES = [torch.bfloat16, torch.float]
NUM_TOKENS = [42] # Arbitrary values for testing
NUM_LAYERS = [1] # Arbitrary values for testing
NUM_HEADS = [8] # Arbitrary values for testing
HEAD_SIZES = [64, 80, 256]
BLOCK_SIZES = [8, 16, 32]
CACHE_LAYOUTS = ["NHD", "HND"]
# Parameters for MLA tests.
KV_LORA_RANKS = [512]
QK_ROPE_HEAD_DIMS = [64]
NUM_TOKENS_MLA = [42]
BLOCK_SIZES_MLA = [16]
NUM_BLOCKS_MLA = [8]
# Arbitrary values for testing
# don't make it too large. e.g. [1024, 36000] will OOM
NUM_BLOCKS = [1024, 10000]
NUM_MAPPINGS = [256] # Arbitrary values for testing
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
# We assume fp8 is always enabled for testing.
KV_CACHE_DTYPE = ["auto", "fp8"]
RESHAPE_FLASH_IMPLEMENTATIONS = ["cuda", "triton"]
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
@pytest.mark.parametrize("num_layers", NUM_LAYERS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_copy_blocks(
kv_cache_factory,
num_mappings: int,
num_layers: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
kv_cache_dtype: str,
device: str,
) -> None:
if kv_cache_dtype == "fp8" and head_size % 16:
pytest.skip()
current_platform.seed_everything(seed)
torch.set_default_device(device)
# Generate random block mappings where each source block is mapped to two
# destination blocks.
assert 2 * num_mappings <= num_blocks
src_blocks = random.sample(range(num_blocks), num_mappings)
remaining_blocks = list(set(range(num_blocks)) - set(src_blocks))
dst_blocks = random.sample(remaining_blocks, 2 * num_mappings)
block_mapping: list[tuple[int, int]] = []
for i in range(num_mappings):
src = src_blocks[i]
dst1 = dst_blocks[2 * i]
dst2 = dst_blocks[2 * i + 1]
block_mapping.append((src, dst1))
block_mapping.append((src, dst2))
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(num_blocks, block_size,
num_layers, num_heads,
head_size, kv_cache_dtype,
dtype, seed, device)
# Clone the KV caches.
cloned_key_caches = [key_cache.clone() for key_cache in key_caches]
cloned_value_caches = [value_cache.clone() for value_cache in value_caches]
# Call the copy blocks kernel.
block_mapping_tensor = torch.tensor(block_mapping,
dtype=torch.int64,
device=device).view(-1, 2)
opcheck(torch.ops._C_cache_ops.copy_blocks,
(key_caches, value_caches, block_mapping_tensor),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
cond=(head_size == HEAD_SIZES[0]))
ops.copy_blocks(key_caches, value_caches, block_mapping_tensor)
# Run the reference implementation.
for src, dst in block_mapping:
for cloned_key_cache in cloned_key_caches:
cloned_key_cache[dst].copy_(cloned_key_cache[src])
for cloned_value_cache in cloned_value_caches:
cloned_value_cache[dst].copy_(cloned_value_cache[src])
# Compare the results.
for key_cache, cloned_key_cache in zip(key_caches, cloned_key_caches):
torch.testing.assert_close(key_cache, cloned_key_cache)
for value_cache, cloned_value_cache in zip(value_caches,
cloned_value_caches):
torch.testing.assert_close(value_cache, cloned_value_cache)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_reshape_and_cache(
kv_cache_factory,
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: str,
kv_cache_dtype: str,
) -> None:
if kv_cache_dtype == "fp8" and head_size % 16:
pytest.skip()
current_platform.seed_everything(seed)
torch.set_default_device(device)
# Create a random slot mapping.
num_slots = block_size * num_blocks
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long)
qkv = torch.randn(num_tokens, 3, num_heads, head_size, dtype=dtype)
_, key, value = qkv.unbind(dim=1)
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(num_blocks, block_size, 1,
num_heads, head_size,
kv_cache_dtype, dtype, seed,
device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Using default kv_scale
k_scale = (key.amax() / 64.0).to(torch.float32)
v_scale = (value.amax() / 64.0).to(torch.float32)
# Clone the KV caches.
if kv_cache_dtype == "fp8":
cloned_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
ops.convert_fp8(cloned_key_cache, key_cache, k_scale.item())
cloned_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
ops.convert_fp8(cloned_value_cache, value_cache, v_scale.item())
else:
cloned_key_cache = key_cache.clone()
cloned_value_cache = value_cache.clone()
# Call the reshape_and_cache kernel.
opcheck(torch.ops._C_cache_ops.reshape_and_cache,
(key, value, key_cache, value_cache, slot_mapping, kv_cache_dtype,
k_scale, v_scale),
cond=(head_size == HEAD_SIZES[0]))
ops.reshape_and_cache(key, value, key_cache, value_cache, slot_mapping,
kv_cache_dtype, k_scale, v_scale)
if kv_cache_dtype == "fp8":
result_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
ops.convert_fp8(result_key_cache, key_cache, k_scale.item())
result_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
ops.convert_fp8(result_value_cache, value_cache, v_scale.item())
# Run the reference implementation.
reshaped_key = key.reshape(num_tokens, *key_cache[0, :, :, 0, :].shape)
block_indices = torch.div(slot_mapping, block_size, rounding_mode="floor")
block_indices_lst = block_indices.cpu().tolist()
block_offsets = slot_mapping % block_size
block_offsets_lst = block_offsets.cpu().tolist()
for i in range(num_tokens):
block_idx = block_indices_lst[i]
block_offset = block_offsets_lst[i]
cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
cloned_value_cache[block_idx, :, :, block_offset] = value[i]
if kv_cache_dtype == "fp8":
torch.testing.assert_close(result_key_cache,
cloned_key_cache,
atol=0.001,
rtol=0.1)
torch.testing.assert_close(result_value_cache,
cloned_value_cache,
atol=0.001,
rtol=0.1)
else:
torch.testing.assert_close(key_cache, cloned_key_cache)
torch.testing.assert_close(value_cache, cloned_value_cache)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@pytest.mark.parametrize("kv_cache_layout", CACHE_LAYOUTS)
@pytest.mark.parametrize("implementation", RESHAPE_FLASH_IMPLEMENTATIONS)
@torch.inference_mode()
def test_reshape_and_cache_flash(
kv_cache_factory_flashinfer,
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: str,
kv_cache_dtype: str,
kv_cache_layout: str,
implementation: str,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
assert implementation in ["cuda", "triton"]
if implementation == "triton" and kv_cache_layout == "HND":
pytest.skip("Triton implementation only supports NHD layout.")
# fp8 conversion requires continugous memory buffer. Reduce the number of
# blocks and tokens to consume less memory.
num_tokens = num_tokens // 2
num_blocks = num_blocks // 2
# Create a random slot mapping.
num_slots = block_size * num_blocks
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst,
dtype=torch.long,
device=device)
qkv = torch.randn(num_tokens,
3,
num_heads,
head_size,
dtype=dtype,
device=device)
_, key, value = qkv.unbind(dim=1)
# Create the KV caches.
key_caches, value_caches = kv_cache_factory_flashinfer(
num_blocks,
block_size,
1,
num_heads,
head_size,
kv_cache_dtype,
dtype,
device=device,
cache_layout=kv_cache_layout,
)
key_cache, value_cache = key_caches[0], value_caches[0]
del key_caches
del value_caches
k_scale = (key.amax() / 64.0).to(torch.float32)
v_scale = (value.amax() / 64.0).to(torch.float32)
def permute_and_compact(x):
y = x if kv_cache_layout == "NHD" else x.permute(0, 2, 1, 3)
return y.contiguous()
key_cache_compact = permute_and_compact(key_cache)
value_cache_compact = permute_and_compact(value_cache)
# Clone the KV caches.
if kv_cache_dtype == "fp8":
cloned_key_cache = torch.empty_like(key_cache_compact,
dtype=torch.float16)
ops.convert_fp8(cloned_key_cache, key_cache_compact, k_scale.item(),
kv_cache_dtype)
cloned_value_cache = torch.empty_like(value_cache_compact,
dtype=torch.float16)
ops.convert_fp8(cloned_value_cache, value_cache_compact,
v_scale.item(), kv_cache_dtype)
else:
cloned_key_cache = key_cache_compact.clone()
cloned_value_cache = value_cache_compact.clone()
# Call the reshape_and_cache kernel.
if implementation == "cuda":
opcheck(torch.ops._C_cache_ops.reshape_and_cache_flash,
(key, value, key_cache, value_cache, slot_mapping,
kv_cache_dtype, k_scale, v_scale),
cond=(head_size == HEAD_SIZES[0]))
ops.reshape_and_cache_flash(key, value, key_cache, value_cache,
slot_mapping, kv_cache_dtype, k_scale,
v_scale)
elif implementation == "triton":
from vllm.attention.ops.triton_reshape_and_cache_flash import (
triton_reshape_and_cache_flash)
triton_reshape_and_cache_flash(key, value, key_cache, value_cache,
slot_mapping, kv_cache_dtype, k_scale,
v_scale)
key_cache_compact = permute_and_compact(key_cache)
value_cache_compact = permute_and_compact(value_cache)
if kv_cache_dtype == "fp8":
result_key_cache = torch.empty_like(key_cache_compact,
dtype=torch.float16)
ops.convert_fp8(result_key_cache,
key_cache_compact,
k_scale.item(),
kv_dtype=kv_cache_dtype)
result_value_cache = torch.empty_like(value_cache_compact,
dtype=torch.float16)
ops.convert_fp8(result_value_cache,
value_cache_compact,
v_scale.item(),
kv_dtype=kv_cache_dtype)
# Run the reference implementation.
block_indices = torch.div(slot_mapping, block_size, rounding_mode="floor")
block_indices_lst = block_indices.cpu().tolist()
block_offsets = slot_mapping % block_size
block_offsets_lst = block_offsets.cpu().tolist()
for i in range(num_tokens):
block_idx = block_indices_lst[i]
block_offset = block_offsets_lst[i]
if kv_cache_layout == "NHD":
cloned_key_cache[block_idx, block_offset, :, :] = key[i]
cloned_value_cache[block_idx, block_offset, :, :] = value[i]
else:
cloned_key_cache[block_idx, :, block_offset, :] = key[i]
cloned_value_cache[block_idx, :, block_offset, :] = value[i]
if kv_cache_dtype == "fp8":
torch.testing.assert_close(result_key_cache,
cloned_key_cache,
atol=0.001,
rtol=0.1)
torch.testing.assert_close(result_value_cache,
cloned_value_cache,
atol=0.001,
rtol=0.1)
else:
torch.testing.assert_close(key_cache_compact, cloned_key_cache)
torch.testing.assert_close(value_cache_compact, cloned_value_cache)
@pytest.mark.parametrize("direction", COPYING_DIRECTION)
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_swap_blocks(
kv_cache_factory,
direction: tuple[str, str],
num_mappings: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: str,
kv_cache_dtype: str,
) -> None:
if kv_cache_dtype == "fp8" and "cpu" in direction:
pytest.skip()
if kv_cache_dtype == "fp8" and head_size % 16:
pytest.skip()
current_platform.seed_everything(seed)
src_device = device if direction[0] == "cuda" else 'cpu'
dst_device = device if direction[1] == "cuda" else 'cpu'
src_blocks = random.sample(range(num_blocks), num_mappings)
# For the same device, mapping must not overlap
if src_device == dst_device:
remaining_blocks = list(set(range(num_blocks)) - set(src_blocks))
dst_blocks = random.sample(remaining_blocks, num_mappings)
else:
dst_blocks = random.sample(range(num_blocks), num_mappings)
block_mapping = list(zip(src_blocks, dst_blocks))
block_mapping_tensor = torch.tensor(block_mapping,
dtype=torch.int64,
device="cpu").view(-1, 2)
# Create the KV caches on the first device.
src_key_caches, src_value_caches = kv_cache_factory(
num_blocks, block_size, 1, num_heads, head_size, kv_cache_dtype, dtype,
seed, src_device)
# Create the KV caches on the second device.
dist_key_caches, dist_value_caches = kv_cache_factory(
num_blocks, block_size, 1, num_heads, head_size, kv_cache_dtype, dtype,
seed, dst_device)
src_key_caches_clone = src_key_caches[0].clone()
src_value_caches_clone = src_value_caches[0].clone()
# Call the swap_blocks kernel.
do_opcheck = (head_size == HEAD_SIZES[0])
opcheck(torch.ops._C_cache_ops.swap_blocks,
(src_key_caches[0], dist_key_caches[0], block_mapping_tensor),
cond=do_opcheck)
opcheck(torch.ops._C_cache_ops.swap_blocks,
(src_value_caches[0], dist_value_caches[0], block_mapping_tensor),
cond=do_opcheck)
ops.swap_blocks(src_key_caches[0], dist_key_caches[0],
block_mapping_tensor)
ops.swap_blocks(src_value_caches[0], dist_value_caches[0],
block_mapping_tensor)
for src, dst in block_mapping:
torch.testing.assert_close(src_key_caches_clone[src].cpu(),
dist_key_caches[0][dst].cpu())
torch.testing.assert_close(src_value_caches_clone[src].cpu(),
dist_value_caches[0][dst].cpu())
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_fp8_e4m3_conversion(
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
current_platform.seed_everything(seed)
low = -224.0
high = 224.0
shape = (num_blocks, num_heads, head_size, block_size)
cache = torch.empty(shape, dtype=dtype, device=device)
cache.uniform_(low, high)
cache_fp8 = torch.empty_like(cache, dtype=torch.uint8)
ops.convert_fp8(cache_fp8, cache)
converted_cache = torch.empty_like(cache)
ops.convert_fp8(converted_cache, cache_fp8)
torch.testing.assert_close(cache, converted_cache, atol=0.001, rtol=0.1)
def _create_mla_cache(
num_blocks: int,
block_size: int,
entry_size: int,
dtype: torch.dtype,
kv_cache_dtype: str,
device: str,
) -> torch.Tensor:
cache_dtype = torch.uint8 if kv_cache_dtype == "fp8" else dtype
return torch.zeros(num_blocks,
block_size,
entry_size,
dtype=cache_dtype,
device=device)
def _fill_mla_cache(cache: torch.Tensor, kv_cache_dtype: str):
rand_dtype = torch.float16 if kv_cache_dtype == "fp8" else cache.dtype
vals = torch.randn(*cache.shape, device=cache.device, dtype=rand_dtype)
if kv_cache_dtype == "fp8":
temp = torch.zeros_like(cache)
ops.convert_fp8(temp, vals, 1.0, kv_dtype=kv_cache_dtype)
vals = temp
cache.copy_(vals)
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS_MLA)
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS_MLA)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_concat_and_cache_mla(
kv_lora_rank: int,
qk_rope_head_dim: int,
num_tokens: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: str,
kv_cache_dtype: str,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
total_slots = num_blocks * block_size
slot_mapping_lst = random.sample(range(total_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst,
dtype=torch.long,
device=device)
kv_c = torch.randn(num_tokens, kv_lora_rank, dtype=dtype, device=device)
k_pe = torch.randn(num_tokens,
qk_rope_head_dim,
dtype=dtype,
device=device)
entry_size = kv_lora_rank + qk_rope_head_dim
scale = torch.tensor(0.1, dtype=torch.float32, device=device)
kv_cache = _create_mla_cache(num_blocks, block_size, entry_size, dtype,
kv_cache_dtype, device)
ref_temp = torch.zeros(*kv_cache.shape, dtype=dtype, device=device)
for i in range(num_tokens):
slot = slot_mapping[i].item()
block_idx = slot // block_size
block_offset = slot % block_size
ref_temp[block_idx, block_offset, :kv_lora_rank] = kv_c[i]
ref_temp[block_idx, block_offset, kv_lora_rank:] = k_pe[i]
if kv_cache_dtype == "fp8":
ref_kv_cache = torch.empty_like(ref_temp, dtype=kv_cache.dtype)
ops.convert_fp8(ref_kv_cache,
ref_temp,
scale.item(),
kv_dtype=kv_cache_dtype)
else:
ref_kv_cache = ref_temp
opcheck(
torch.ops._C_cache_ops.concat_and_cache_mla,
(kv_c, k_pe, kv_cache, slot_mapping, kv_cache_dtype, scale),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
)
ops.concat_and_cache_mla(kv_c, k_pe, kv_cache, slot_mapping,
kv_cache_dtype, scale)
if kv_cache_dtype == "fp8":
result_temp = torch.empty_like(kv_cache, dtype=torch.float16)
ops.convert_fp8(result_temp,
kv_cache.contiguous(),
scale.item(),
kv_dtype=kv_cache_dtype)
expected_temp = torch.empty_like(ref_kv_cache, dtype=torch.float16)
ops.convert_fp8(expected_temp,
ref_kv_cache,
scale.item(),
kv_dtype=kv_cache_dtype)
torch.testing.assert_close(result_temp,
expected_temp,
atol=0.001,
rtol=0.1)
else:
torch.testing.assert_close(kv_cache, ref_kv_cache)
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS_MLA)
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS_MLA)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_concat_and_cache_ds_mla(
kv_lora_rank: int,
qk_rope_head_dim: int,
num_tokens: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
if dtype.itemsize != 2:
pytest.skip("ds_mla only supports 16-bit input")
kv_cache_dtype = "fp8_ds_mla"
current_platform.seed_everything(seed)
torch.set_default_device(device)
total_slots = num_blocks * block_size
slot_mapping_lst = random.sample(range(total_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst,
dtype=torch.long,
device=device)
kv_c = torch.randn(num_tokens, kv_lora_rank, dtype=dtype, device=device)
k_pe = torch.randn(num_tokens,
qk_rope_head_dim,
dtype=dtype,
device=device)
entry_size = kv_lora_rank + (4 * 4) + (2 * qk_rope_head_dim)
scale = torch.tensor(1.0, dtype=torch.float32, device=device)
kv_cache = _create_mla_cache(num_blocks,
block_size,
entry_size,
dtype=torch.uint8,
kv_cache_dtype=kv_cache_dtype,
device=device)
ref_cache = torch.zeros_like(kv_cache, dtype=kv_cache.dtype)
tile_data = torch.zeros(128, dtype=dtype, device=device)
for i in range(num_tokens):
slot = slot_mapping[i].item()
block_idx = slot // block_size
block_offset = slot % block_size
ref_cache_slice = ref_cache[block_idx, block_offset]
ref_cache_16bit = ref_cache_slice.view(dtype)
ref_cache_32bit = ref_cache_slice.view(torch.float32)
kv_c_data = kv_c[i]
for tile_idx in range(4):
tile_start = tile_idx * 128
tile_end = (tile_idx + 1) * 128
tile_data[:] = kv_c_data[tile_start:tile_end]
# tile_scale = tile_data.amax().to(torch.float32) / 448.
# NOTE: Using torch's amax() gives different results,
# so this must be manually computed.
tile_data_float = tile_data.to(torch.float32)
manual_max = abs(tile_data_float[0])
for j in range(1, 128):
manual_max = max(manual_max, abs(tile_data_float[j]))
tile_scale = manual_max / 448.
ref_cache_32bit[kv_lora_rank // 4 + tile_idx] = tile_scale
ops.convert_fp8(ref_cache_slice[tile_start:tile_end],
tile_data,
tile_scale.item(),
kv_dtype="fp8")
for j in range(qk_rope_head_dim):
ref_cache_16bit[kv_lora_rank // 2 + 8 + j] = k_pe[i, j]
opcheck(
torch.ops._C_cache_ops.concat_and_cache_mla,
(kv_c, k_pe, kv_cache, slot_mapping, kv_cache_dtype, scale),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
)
ops.concat_and_cache_mla(kv_c, k_pe, kv_cache, slot_mapping,
kv_cache_dtype, scale)
for i in range(num_tokens):
slot = slot_mapping[i].item()
block_idx = slot // block_size
block_offset = slot % block_size
kv_cache_slice = kv_cache[block_idx, block_offset]
ref_cache_slice = ref_cache[block_idx, block_offset]
kv_nope = kv_cache_slice[:kv_lora_rank]
ref_nope = ref_cache_slice[:kv_lora_rank]
kv_scales = kv_cache_slice.view(torch.float32)[kv_lora_rank //
4:kv_lora_rank // 4 + 4]
ref_scales = ref_cache_slice.view(
torch.float32)[kv_lora_rank // 4:kv_lora_rank // 4 + 4]
kv_rope = kv_cache_slice.view(dtype)[kv_lora_rank // 2 + 8:]
ref_rope = ref_cache_slice.view(dtype)[kv_lora_rank // 2 + 8:]
torch.testing.assert_close(kv_nope, ref_nope, atol=0.001, rtol=0.1)
torch.testing.assert_close(kv_scales, ref_scales, atol=0.001, rtol=0.1)
torch.testing.assert_close(kv_rope, ref_rope, atol=0.001, rtol=0.1)
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS_MLA)
@pytest.mark.parametrize("num_layers", NUM_LAYERS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_copy_blocks_mla(
kv_lora_rank: int,
qk_rope_head_dim: int,
block_size: int,
num_blocks: int,
num_layers: int,
dtype: torch.dtype,
seed: int,
device: str,
kv_cache_dtype: str,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
entry_size = kv_lora_rank + qk_rope_head_dim
kv_caches = []
for _ in range(num_layers):
kv_cache = _create_mla_cache(num_blocks, block_size, entry_size, dtype,
kv_cache_dtype, device)
_fill_mla_cache(kv_cache, kv_cache_dtype=kv_cache_dtype)
kv_caches.append(kv_cache)
ref_caches = [kv_cache.clone() for kv_cache in kv_caches]
num_mappings = min(2, num_blocks // 2)
src_blocks = random.sample(range(num_blocks), num_mappings)
remaining = list(set(range(num_blocks)) - set(src_blocks))
dst_blocks = random.sample(remaining, 2 * num_mappings)
block_mapping = []
for i in range(num_mappings):
src = src_blocks[i]
dst1 = dst_blocks[2 * i]
dst2 = dst_blocks[2 * i + 1]
block_mapping.append((src, dst1))
block_mapping.append((src, dst2))
block_mapping_tensor = torch.tensor(block_mapping,
dtype=torch.int64,
device=device).view(-1, 2)
for src, dst in block_mapping:
for ref_cache in ref_caches:
ref_cache[dst].copy_(ref_cache[src])
opcheck(
torch.ops._C_cache_ops.copy_blocks_mla,
(kv_caches, block_mapping_tensor),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
)
ops.copy_blocks_mla(kv_caches, block_mapping_tensor)
for kv_cache, ref_cache in zip(kv_caches, ref_caches):
torch.testing.assert_close(kv_cache, ref_cache)
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS_MLA)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_swap_blocks_mla(
kv_lora_rank: int,
qk_rope_head_dim: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: str,
kv_cache_dtype: str,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
entry_size = kv_lora_rank + qk_rope_head_dim
src_cache = _create_mla_cache(num_blocks, block_size, entry_size, dtype,
kv_cache_dtype, device)
dst_cache = _create_mla_cache(num_blocks, block_size, entry_size, dtype,
kv_cache_dtype, device)
_fill_mla_cache(src_cache, kv_cache_dtype)
_fill_mla_cache(dst_cache, kv_cache_dtype)
src_cache_clone = src_cache.clone()
num_mappings = min(2, num_blocks // 2)
src_blocks = random.sample(range(num_blocks), num_mappings)
remaining_blocks = list(set(range(num_blocks)) - set(src_blocks))
dst_blocks = random.sample(remaining_blocks, num_mappings)
block_mapping = list(zip(src_blocks, dst_blocks))
block_mapping_tensor = torch.tensor(block_mapping,
dtype=torch.int64,
device="cpu").view(-1, 2)
opcheck(
torch.ops._C_cache_ops.swap_blocks,
(src_cache, dst_cache, block_mapping_tensor),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
)
ops.swap_blocks(src_cache, dst_cache, block_mapping_tensor)
for src, dst in block_mapping:
torch.testing.assert_close(
src_cache_clone[src].cpu(),
dst_cache[dst].cpu(),
msg=f"Block {src} from src should have been swapped to block "
f"{dst} in dst_cache.")
@pytest.mark.parametrize("kv_lora_rank", [512])
@pytest.mark.parametrize("qk_rope_head_dim", [64])
@pytest.mark.parametrize("block_size", [16])
@pytest.mark.parametrize("num_blocks", [1024])
@pytest.mark.parametrize("max_seq_len", [512])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("dtype", [torch.float32])
@pytest.mark.parametrize("kv_cache_dtype", ["auto", "fp8"])
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_gather_and_maybe_dequant_cache_mla(kv_lora_rank, qk_rope_head_dim,
block_size, num_blocks,
max_seq_len, batch_size, dtype,
kv_cache_dtype, device):
entry_size = kv_lora_rank + qk_rope_head_dim
scale = torch.tensor(0.1, dtype=torch.float32, device=device)
src_cache = _create_mla_cache(num_blocks, block_size, entry_size, dtype,
kv_cache_dtype, device)
_fill_mla_cache(src_cache, kv_cache_dtype=kv_cache_dtype)
seq_len_tensor = torch.randint(0,
max_seq_len + 1, (batch_size, ),
device=device)
total_tokens = seq_len_tensor.sum()
cu_seq_lens = torch.empty((batch_size + 1),
dtype=torch.int32,
device=device)
cu_seq_lens[0] = 0
cu_seq_lens[1:] = seq_len_tensor.cumsum(dim=0).to(dtype=torch.int32)
print("seq_len_tensor", seq_len_tensor)
tot_blocks_tensor = (seq_len_tensor + block_size - 1) // block_size
block_table = torch.empty((batch_size, num_blocks),
dtype=torch.int32,
device=device)
for b in range(batch_size):
perm = torch.randperm(num_blocks, device=device)
block_table[b, :] = perm
dst = torch.zeros((total_tokens, entry_size), dtype=dtype, device=device)
expected_batches = []
for b in range(batch_size):
s = seq_len_tensor[b]
if s == 0:
continue
tot = tot_blocks_tensor[b]
blocks = block_table[b, :tot].tolist()
gathered_rows = []
for i in range(tot - 1):
block_data = src_cache[blocks[i]]
if kv_cache_dtype == "fp8":
dequantized_block = torch.empty_like(block_data, dtype=dtype)
ops.convert_fp8(dequantized_block, block_data, scale.item())
gathered_rows.append(dequantized_block)
else:
gathered_rows.append(block_data)
remaining = s - (tot - 1) * block_size
last_block_data = src_cache[blocks[-1], :remaining, :]
if kv_cache_dtype == "fp8":
dequantized_last_block = torch.empty_like(last_block_data,
dtype=dtype)
ops.convert_fp8(dequantized_last_block, last_block_data,
scale.item())
gathered_rows.append(dequantized_last_block)
else:
gathered_rows.append(last_block_data)
batch_expected = torch.cat(gathered_rows, dim=0)
expected_batches.append(batch_expected)
expected = torch.cat(expected_batches, dim=0)
opcheck(
torch.ops._C_cache_ops.gather_and_maybe_dequant_cache,
(src_cache, dst, block_table, cu_seq_lens, batch_size, kv_cache_dtype,
scale, None),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
)
ops.gather_and_maybe_dequant_cache(src_cache, dst, block_table,
cu_seq_lens, batch_size, kv_cache_dtype,
scale, None)
torch.testing.assert_close(dst, expected)
@pytest.mark.parametrize("kv_lora_rank", [512])
@pytest.mark.parametrize("qk_rope_head_dim", [64])
@pytest.mark.parametrize("block_size", [16])
@pytest.mark.parametrize("num_blocks", [1024])
@pytest.mark.parametrize("max_seq_len", [512])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("dtype", [torch.float32])
@pytest.mark.parametrize("kv_cache_dtype",
["auto"]) # You can also test "fp8" if needed.
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_cp_gather_cache_mla(kv_lora_rank, qk_rope_head_dim, block_size,
num_blocks, max_seq_len, batch_size, dtype,
kv_cache_dtype, device):
entry_size = kv_lora_rank + qk_rope_head_dim
src_cache = _create_mla_cache(num_blocks, block_size, entry_size, dtype,
kv_cache_dtype, device)
_fill_mla_cache(src_cache, kv_cache_dtype=kv_cache_dtype)
seq_len_tensor = torch.randint(0,
max_seq_len + 1, (batch_size, ),
device=device)
total_tokens = seq_len_tensor.sum()
cu_seq_lens = torch.empty((batch_size + 1),
dtype=torch.int32,
device=device)
cu_seq_lens[0] = 0
cu_seq_lens[1:] = seq_len_tensor.cumsum(dim=0).to(dtype=torch.int32)
print("seq_len_tensor", seq_len_tensor)
tot_blocks_tensor = (seq_len_tensor + block_size - 1) // block_size
block_table = torch.empty((batch_size, num_blocks),
dtype=torch.int32,
device=device)
for b in range(batch_size):
perm = torch.randperm(num_blocks, device=device)
block_table[b, :] = perm
dst = torch.zeros((total_tokens, entry_size),
dtype=src_cache.dtype,
device=device)
expected_batches = []
for b in range(batch_size):
s = seq_len_tensor[b]
if s == 0:
continue
tot = tot_blocks_tensor[b]
blocks = block_table[b, :tot].tolist()
gathered_rows = []
for i in range(tot - 1):
gathered_rows.append(src_cache[blocks[i]])
remaining = s - (tot - 1) * block_size
gathered_rows.append(src_cache[blocks[-1], :remaining, :])
batch_expected = torch.cat(gathered_rows, dim=0)
expected_batches.append(batch_expected)
expected = torch.cat(expected_batches, dim=0)
opcheck(
torch.ops._C_cache_ops.cp_gather_cache,
(src_cache, dst, block_table, cu_seq_lens, batch_size, None),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
)
ops.cp_gather_cache(src_cache, dst, block_table, cu_seq_lens, batch_size)
torch.testing.assert_close(dst, expected)
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS_MLA)
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS_MLA)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.cpu_model
@pytest.mark.skipif(not current_platform.is_cpu(), reason="CPU only")
@torch.inference_mode()
def test_concat_and_cache_mla_cpu(
kv_lora_rank: int,
qk_rope_head_dim: int,
num_tokens: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
) -> None:
device = "cpu"
kv_cache_dtype = "auto"
current_platform.seed_everything(seed)
torch.set_default_device(device)
total_slots = num_blocks * block_size
slot_mapping_lst = random.sample(range(total_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst,
dtype=torch.long,
device=device)
kv_c = torch.randn(num_tokens, kv_lora_rank, dtype=dtype, device=device)
k_pe = torch.randn(num_tokens,
qk_rope_head_dim,
dtype=dtype,
device=device)
entry_size = kv_lora_rank + qk_rope_head_dim
scale = torch.tensor(0.1, dtype=torch.float32, device=device)
kv_cache = _create_mla_cache(num_blocks, block_size, entry_size, dtype,
kv_cache_dtype, device)
ref_temp = torch.zeros(*kv_cache.shape, dtype=dtype, device=device)
for i in range(num_tokens):
slot = slot_mapping[i].item()
block_idx = slot // block_size
block_offset = slot % block_size
ref_temp[block_idx, block_offset, :kv_lora_rank] = kv_c[i]
ref_temp[block_idx, block_offset, kv_lora_rank:] = k_pe[i]
if kv_cache_dtype == "fp8":
ref_kv_cache = torch.empty_like(ref_temp, dtype=kv_cache.dtype)
ops.convert_fp8(ref_kv_cache,
ref_temp,
scale.item(),
kv_dtype=kv_cache_dtype)
else:
ref_kv_cache = ref_temp
opcheck(
torch.ops._C_cache_ops.concat_and_cache_mla,
(kv_c, k_pe, kv_cache, slot_mapping, kv_cache_dtype, scale),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
)
ops.concat_and_cache_mla(kv_c, k_pe, kv_cache, slot_mapping,
kv_cache_dtype, scale)
torch.testing.assert_close(kv_cache, ref_kv_cache)