mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
3002 lines
104 KiB
Python
3002 lines
104 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||
|
||
# Adapted from
|
||
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
|
||
import json
|
||
import time
|
||
from http import HTTPStatus
|
||
from typing import Annotated, Any, ClassVar, Generic, Literal, TypeAlias, TypeVar
|
||
|
||
import regex as re
|
||
import torch
|
||
from fastapi import HTTPException, UploadFile
|
||
from openai.types.chat.chat_completion_audio import (
|
||
ChatCompletionAudio as OpenAIChatCompletionAudio,
|
||
)
|
||
from openai.types.chat.chat_completion_message import Annotation as OpenAIAnnotation
|
||
from openai.types.responses import (
|
||
ResponseCodeInterpreterCallCodeDeltaEvent,
|
||
ResponseCodeInterpreterCallCodeDoneEvent,
|
||
ResponseCodeInterpreterCallCompletedEvent,
|
||
ResponseCodeInterpreterCallInProgressEvent,
|
||
ResponseCodeInterpreterCallInterpretingEvent,
|
||
ResponseContentPartAddedEvent,
|
||
ResponseContentPartDoneEvent,
|
||
ResponseFunctionToolCall,
|
||
ResponseInputItemParam,
|
||
ResponseOutputItem,
|
||
ResponseOutputItemAddedEvent,
|
||
ResponseOutputItemDoneEvent,
|
||
ResponsePrompt,
|
||
ResponseReasoningItem,
|
||
ResponseReasoningTextDeltaEvent,
|
||
ResponseReasoningTextDoneEvent,
|
||
ResponseStatus,
|
||
ResponseWebSearchCallCompletedEvent,
|
||
ResponseWebSearchCallInProgressEvent,
|
||
ResponseWebSearchCallSearchingEvent,
|
||
)
|
||
from openai.types.responses import (
|
||
ResponseCompletedEvent as OpenAIResponseCompletedEvent,
|
||
)
|
||
from openai.types.responses import ResponseCreatedEvent as OpenAIResponseCreatedEvent
|
||
from openai.types.responses import (
|
||
ResponseInProgressEvent as OpenAIResponseInProgressEvent,
|
||
)
|
||
from openai.types.responses.response_reasoning_item import (
|
||
Content as ResponseReasoningTextContent,
|
||
)
|
||
|
||
# Backward compatibility for OpenAI client versions
|
||
try: # For older openai versions (< 1.100.0)
|
||
from openai.types.responses import ResponseTextConfig
|
||
except ImportError: # For newer openai versions (>= 1.100.0)
|
||
from openai.types.responses import ResponseFormatTextConfig as ResponseTextConfig
|
||
|
||
|
||
from openai.types.responses.response import IncompleteDetails, ToolChoice
|
||
from openai.types.responses.tool import Tool
|
||
from openai.types.shared import Metadata, Reasoning
|
||
from pydantic import (
|
||
BaseModel,
|
||
ConfigDict,
|
||
Field,
|
||
TypeAdapter,
|
||
ValidationInfo,
|
||
field_serializer,
|
||
field_validator,
|
||
model_validator,
|
||
)
|
||
|
||
from vllm import envs
|
||
from vllm.entrypoints.chat_utils import ChatCompletionMessageParam, make_tool_call_id
|
||
from vllm.entrypoints.score_utils import ScoreContentPartParam, ScoreMultiModalParam
|
||
from vllm.logger import init_logger
|
||
from vllm.logprobs import Logprob
|
||
from vllm.pooling_params import PoolingParams
|
||
from vllm.sampling_params import (
|
||
BeamSearchParams,
|
||
RequestOutputKind,
|
||
SamplingParams,
|
||
StructuredOutputsParams,
|
||
)
|
||
from vllm.utils import random_uuid, resolve_obj_by_qualname
|
||
|
||
EMBED_DTYPE_TO_TORCH_DTYPE = {
|
||
"float32": torch.float32,
|
||
"float16": torch.float16,
|
||
"bfloat16": torch.bfloat16,
|
||
# I'm not sure if other platforms' CPUs support the fp8 data format.
|
||
# EMBED_DTYPE only uses the fp8 data representation,
|
||
# does not use fp8 computation, and only occurs on the CPU.
|
||
# Apologize for any possible break.
|
||
"fp8_e4m3": torch.float8_e4m3fn,
|
||
"fp8_e5m2": torch.float8_e5m2,
|
||
}
|
||
|
||
logger = init_logger(__name__)
|
||
|
||
_LONG_INFO = torch.iinfo(torch.long)
|
||
|
||
|
||
class OpenAIBaseModel(BaseModel):
|
||
# OpenAI API does allow extra fields
|
||
model_config = ConfigDict(extra="allow")
|
||
|
||
# Cache class field names
|
||
field_names: ClassVar[set[str] | None] = None
|
||
|
||
@model_validator(mode="wrap")
|
||
@classmethod
|
||
def __log_extra_fields__(cls, data, handler):
|
||
result = handler(data)
|
||
if not isinstance(data, dict):
|
||
return result
|
||
field_names = cls.field_names
|
||
if field_names is None:
|
||
# Get all class field names and their potential aliases
|
||
field_names = set()
|
||
for field_name, field in cls.model_fields.items():
|
||
field_names.add(field_name)
|
||
if alias := getattr(field, "alias", None):
|
||
field_names.add(alias)
|
||
cls.field_names = field_names
|
||
|
||
# Compare against both field names and aliases
|
||
if any(k not in field_names for k in data):
|
||
logger.warning(
|
||
"The following fields were present in the request but ignored: %s",
|
||
data.keys() - field_names,
|
||
)
|
||
return result
|
||
|
||
|
||
class ErrorInfo(OpenAIBaseModel):
|
||
message: str
|
||
type: str
|
||
param: str | None = None
|
||
code: int
|
||
|
||
|
||
class ErrorResponse(OpenAIBaseModel):
|
||
error: ErrorInfo
|
||
|
||
|
||
class ModelPermission(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
|
||
object: str = "model_permission"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
allow_create_engine: bool = False
|
||
allow_sampling: bool = True
|
||
allow_logprobs: bool = True
|
||
allow_search_indices: bool = False
|
||
allow_view: bool = True
|
||
allow_fine_tuning: bool = False
|
||
organization: str = "*"
|
||
group: str | None = None
|
||
is_blocking: bool = False
|
||
|
||
|
||
class ModelCard(OpenAIBaseModel):
|
||
id: str
|
||
object: str = "model"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
owned_by: str = "vllm"
|
||
root: str | None = None
|
||
parent: str | None = None
|
||
max_model_len: int | None = None
|
||
permission: list[ModelPermission] = Field(default_factory=list)
|
||
|
||
|
||
class ModelList(OpenAIBaseModel):
|
||
object: str = "list"
|
||
data: list[ModelCard] = Field(default_factory=list)
|
||
|
||
|
||
class PromptTokenUsageInfo(OpenAIBaseModel):
|
||
cached_tokens: int | None = None
|
||
|
||
|
||
class UsageInfo(OpenAIBaseModel):
|
||
prompt_tokens: int = 0
|
||
total_tokens: int = 0
|
||
completion_tokens: int | None = 0
|
||
prompt_tokens_details: PromptTokenUsageInfo | None = None
|
||
|
||
|
||
class RequestResponseMetadata(BaseModel):
|
||
request_id: str
|
||
final_usage_info: UsageInfo | None = None
|
||
|
||
|
||
class JsonSchemaResponseFormat(OpenAIBaseModel):
|
||
name: str
|
||
description: str | None = None
|
||
# schema is the field in openai but that causes conflicts with pydantic so
|
||
# instead use json_schema with an alias
|
||
json_schema: dict[str, Any] | None = Field(default=None, alias="schema")
|
||
strict: bool | None = None
|
||
|
||
|
||
class StructuralTag(OpenAIBaseModel):
|
||
begin: str
|
||
# schema is the field, but that causes conflicts with pydantic so
|
||
# instead use structural_tag_schema with an alias
|
||
structural_tag_schema: dict[str, Any] | None = Field(default=None, alias="schema")
|
||
end: str
|
||
|
||
|
||
class StructuralTagResponseFormat(OpenAIBaseModel):
|
||
type: Literal["structural_tag"]
|
||
structures: list[StructuralTag]
|
||
triggers: list[str]
|
||
|
||
|
||
class ResponseFormat(OpenAIBaseModel):
|
||
# type must be "json_schema", "json_object", or "text"
|
||
type: Literal["text", "json_object", "json_schema"]
|
||
json_schema: JsonSchemaResponseFormat | None = None
|
||
|
||
|
||
AnyResponseFormat: TypeAlias = ResponseFormat | StructuralTagResponseFormat
|
||
|
||
|
||
class StreamOptions(OpenAIBaseModel):
|
||
include_usage: bool | None = True
|
||
continuous_usage_stats: bool | None = False
|
||
|
||
|
||
class FunctionDefinition(OpenAIBaseModel):
|
||
name: str
|
||
description: str | None = None
|
||
parameters: dict[str, Any] | None = None
|
||
|
||
|
||
class ChatCompletionToolsParam(OpenAIBaseModel):
|
||
type: Literal["function"] = "function"
|
||
function: FunctionDefinition
|
||
|
||
|
||
class ChatCompletionNamedFunction(OpenAIBaseModel):
|
||
name: str
|
||
|
||
|
||
class ChatCompletionNamedToolChoiceParam(OpenAIBaseModel):
|
||
function: ChatCompletionNamedFunction
|
||
type: Literal["function"] = "function"
|
||
|
||
|
||
# extra="forbid" is a workaround to have kwargs as a field,
|
||
# see https://github.com/pydantic/pydantic/issues/3125
|
||
class LogitsProcessorConstructor(BaseModel):
|
||
qualname: str
|
||
args: list[Any] | None = None
|
||
kwargs: dict[str, Any] | None = None
|
||
|
||
model_config = ConfigDict(extra="forbid")
|
||
|
||
|
||
LogitsProcessors = list[str | LogitsProcessorConstructor]
|
||
|
||
|
||
def get_logits_processors(
|
||
processors: LogitsProcessors | None, pattern: str | None
|
||
) -> list[Any] | None:
|
||
if processors and pattern:
|
||
logits_processors = []
|
||
for processor in processors:
|
||
qualname = processor if isinstance(processor, str) else processor.qualname
|
||
if not re.match(pattern, qualname):
|
||
raise ValueError(
|
||
f"Logits processor '{qualname}' is not allowed by this "
|
||
"server. See --logits-processor-pattern engine argument "
|
||
"for more information."
|
||
)
|
||
try:
|
||
logits_processor = resolve_obj_by_qualname(qualname)
|
||
except Exception as e:
|
||
raise ValueError(
|
||
f"Logits processor '{qualname}' could not be resolved: {e}"
|
||
) from e
|
||
if isinstance(processor, LogitsProcessorConstructor):
|
||
logits_processor = logits_processor(
|
||
*processor.args or [], **processor.kwargs or {}
|
||
)
|
||
logits_processors.append(logits_processor)
|
||
return logits_processors
|
||
elif processors:
|
||
raise ValueError(
|
||
"The `logits_processors` argument is not supported by this "
|
||
"server. See --logits-processor-pattern engine argument "
|
||
"for more information."
|
||
)
|
||
return None
|
||
|
||
|
||
ResponseInputOutputItem: TypeAlias = (
|
||
ResponseInputItemParam | ResponseReasoningItem | ResponseFunctionToolCall
|
||
)
|
||
|
||
|
||
class ResponsesRequest(OpenAIBaseModel):
|
||
# Ordered by official OpenAI API documentation
|
||
# https://platform.openai.com/docs/api-reference/responses/create
|
||
background: bool | None = False
|
||
include: (
|
||
list[
|
||
Literal[
|
||
"code_interpreter_call.outputs",
|
||
"computer_call_output.output.image_url",
|
||
"file_search_call.results",
|
||
"message.input_image.image_url",
|
||
"message.output_text.logprobs",
|
||
"reasoning.encrypted_content",
|
||
],
|
||
]
|
||
| None
|
||
) = None
|
||
input: str | list[ResponseInputOutputItem]
|
||
instructions: str | None = None
|
||
max_output_tokens: int | None = None
|
||
max_tool_calls: int | None = None
|
||
metadata: Metadata | None = None
|
||
model: str | None = None
|
||
parallel_tool_calls: bool | None = True
|
||
previous_response_id: str | None = None
|
||
prompt: ResponsePrompt | None = None
|
||
reasoning: Reasoning | None = None
|
||
service_tier: Literal["auto", "default", "flex", "scale", "priority"] = "auto"
|
||
store: bool | None = True
|
||
stream: bool | None = False
|
||
temperature: float | None = None
|
||
text: ResponseTextConfig | None = None
|
||
tool_choice: ToolChoice = "auto"
|
||
tools: list[Tool] = Field(default_factory=list)
|
||
top_logprobs: int | None = 0
|
||
top_p: float | None = None
|
||
truncation: Literal["auto", "disabled"] | None = "disabled"
|
||
user: str | None = None
|
||
|
||
# --8<-- [start:responses-extra-params]
|
||
request_id: str = Field(
|
||
default_factory=lambda: f"resp_{random_uuid()}",
|
||
description=(
|
||
"The request_id related to this request. If the caller does "
|
||
"not set it, a random_uuid will be generated. This id is used "
|
||
"through out the inference process and return in response."
|
||
),
|
||
)
|
||
mm_processor_kwargs: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description=("Additional kwargs to pass to the HF processor."),
|
||
)
|
||
priority: int = Field(
|
||
default=0,
|
||
description=(
|
||
"The priority of the request (lower means earlier handling; "
|
||
"default: 0). Any priority other than 0 will raise an error "
|
||
"if the served model does not use priority scheduling."
|
||
),
|
||
)
|
||
cache_salt: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"If specified, the prefix cache will be salted with the provided "
|
||
"string to prevent an attacker to guess prompts in multi-user "
|
||
"environments. The salt should be random, protected from "
|
||
"access by 3rd parties, and long enough to be "
|
||
"unpredictable (e.g., 43 characters base64-encoded, corresponding "
|
||
"to 256 bit). Not supported by vLLM engine V0."
|
||
),
|
||
)
|
||
|
||
enable_response_messages: bool = Field(
|
||
default=False,
|
||
description=(
|
||
"Dictates whether or not to return messages as part of the "
|
||
"response object. Currently only supported for non-streaming "
|
||
"non-background and gpt-oss only. "
|
||
),
|
||
)
|
||
# --8<-- [end:responses-extra-params]
|
||
|
||
_DEFAULT_SAMPLING_PARAMS = {
|
||
"temperature": 1.0,
|
||
"top_p": 1.0,
|
||
}
|
||
|
||
def to_sampling_params(
|
||
self,
|
||
default_max_tokens: int,
|
||
default_sampling_params: dict | None = None,
|
||
) -> SamplingParams:
|
||
if self.max_output_tokens is None:
|
||
max_tokens = default_max_tokens
|
||
else:
|
||
max_tokens = min(self.max_output_tokens, default_max_tokens)
|
||
|
||
default_sampling_params = default_sampling_params or {}
|
||
if (temperature := self.temperature) is None:
|
||
temperature = default_sampling_params.get(
|
||
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"]
|
||
)
|
||
if (top_p := self.top_p) is None:
|
||
top_p = default_sampling_params.get(
|
||
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"]
|
||
)
|
||
stop_token_ids = default_sampling_params.get("stop_token_ids")
|
||
|
||
# Structured output
|
||
structured_outputs = None
|
||
if self.text is not None and self.text.format is not None:
|
||
response_format = self.text.format
|
||
if (
|
||
response_format.type == "json_schema"
|
||
and response_format.schema_ is not None
|
||
):
|
||
structured_outputs = StructuredOutputsParams(
|
||
json=response_format.schema_
|
||
)
|
||
elif response_format.type == "json_object":
|
||
raise NotImplementedError("json_object is not supported")
|
||
|
||
# TODO: add more parameters
|
||
return SamplingParams.from_optional(
|
||
temperature=temperature,
|
||
top_p=top_p,
|
||
max_tokens=max_tokens,
|
||
logprobs=self.top_logprobs if self.is_include_output_logprobs() else None,
|
||
stop_token_ids=stop_token_ids,
|
||
output_kind=(
|
||
RequestOutputKind.DELTA if self.stream else RequestOutputKind.FINAL_ONLY
|
||
),
|
||
structured_outputs=structured_outputs,
|
||
)
|
||
|
||
def is_include_output_logprobs(self) -> bool:
|
||
"""Check if the request includes output logprobs."""
|
||
if self.include is None:
|
||
return False
|
||
return (
|
||
isinstance(self.include, list)
|
||
and "message.output_text.logprobs" in self.include
|
||
)
|
||
|
||
@model_validator(mode="before")
|
||
def validate_background(cls, data):
|
||
if not data.get("background"):
|
||
return data
|
||
if not data.get("store", True):
|
||
raise ValueError("background can only be used when `store` is true")
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
def validate_prompt(cls, data):
|
||
if data.get("prompt") is not None:
|
||
raise ValueError("prompt template is not supported")
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
def check_cache_salt_support(cls, data):
|
||
if data.get("cache_salt") is not None:
|
||
if not envs.VLLM_USE_V1:
|
||
raise ValueError(
|
||
"Parameter 'cache_salt' is not supported with "
|
||
"this instance of vLLM, which uses engine V0."
|
||
)
|
||
if not isinstance(data["cache_salt"], str) or not data["cache_salt"]:
|
||
raise ValueError(
|
||
"Parameter 'cache_salt' must be a non-empty string if provided."
|
||
)
|
||
return data
|
||
|
||
|
||
class ChatCompletionRequest(OpenAIBaseModel):
|
||
# Ordered by official OpenAI API documentation
|
||
# https://platform.openai.com/docs/api-reference/chat/create
|
||
messages: list[ChatCompletionMessageParam]
|
||
model: str | None = None
|
||
frequency_penalty: float | None = 0.0
|
||
logit_bias: dict[str, float] | None = None
|
||
logprobs: bool | None = False
|
||
top_logprobs: int | None = 0
|
||
max_tokens: int | None = Field(
|
||
default=None,
|
||
deprecated="max_tokens is deprecated in favor of "
|
||
"the max_completion_tokens field",
|
||
)
|
||
max_completion_tokens: int | None = None
|
||
n: int | None = 1
|
||
presence_penalty: float | None = 0.0
|
||
response_format: AnyResponseFormat | None = None
|
||
seed: int | None = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
|
||
stop: str | list[str] | None = []
|
||
stream: bool | None = False
|
||
stream_options: StreamOptions | None = None
|
||
temperature: float | None = None
|
||
top_p: float | None = None
|
||
tools: list[ChatCompletionToolsParam] | None = None
|
||
tool_choice: (
|
||
Literal["none"]
|
||
| Literal["auto"]
|
||
| Literal["required"]
|
||
| ChatCompletionNamedToolChoiceParam
|
||
| None
|
||
) = "none"
|
||
reasoning_effort: Literal["low", "medium", "high"] | None = None
|
||
include_reasoning: bool = True
|
||
|
||
# NOTE this will be ignored by vLLM -- the model determines the behavior
|
||
parallel_tool_calls: bool | None = False
|
||
user: str | None = None
|
||
|
||
# --8<-- [start:chat-completion-sampling-params]
|
||
best_of: int | None = None
|
||
use_beam_search: bool = False
|
||
top_k: int | None = None
|
||
min_p: float | None = None
|
||
repetition_penalty: float | None = None
|
||
length_penalty: float = 1.0
|
||
stop_token_ids: list[int] | None = []
|
||
include_stop_str_in_output: bool = False
|
||
ignore_eos: bool = False
|
||
min_tokens: int = 0
|
||
skip_special_tokens: bool = True
|
||
spaces_between_special_tokens: bool = True
|
||
truncate_prompt_tokens: Annotated[int, Field(ge=-1)] | None = None
|
||
prompt_logprobs: int | None = None
|
||
allowed_token_ids: list[int] | None = None
|
||
bad_words: list[str] = Field(default_factory=list)
|
||
# --8<-- [end:chat-completion-sampling-params]
|
||
|
||
# --8<-- [start:chat-completion-extra-params]
|
||
echo: bool = Field(
|
||
default=False,
|
||
description=(
|
||
"If true, the new message will be prepended with the last message "
|
||
"if they belong to the same role."
|
||
),
|
||
)
|
||
add_generation_prompt: bool = Field(
|
||
default=True,
|
||
description=(
|
||
"If true, the generation prompt will be added to the chat template. "
|
||
"This is a parameter used by chat template in tokenizer config of the "
|
||
"model."
|
||
),
|
||
)
|
||
continue_final_message: bool = Field(
|
||
default=False,
|
||
description=(
|
||
"If this is set, the chat will be formatted so that the final "
|
||
"message in the chat is open-ended, without any EOS tokens. The "
|
||
"model will continue this message rather than starting a new one. "
|
||
'This allows you to "prefill" part of the model\'s response for it. '
|
||
"Cannot be used at the same time as `add_generation_prompt`."
|
||
),
|
||
)
|
||
add_special_tokens: bool = Field(
|
||
default=False,
|
||
description=(
|
||
"If true, special tokens (e.g. BOS) will be added to the prompt "
|
||
"on top of what is added by the chat template. "
|
||
"For most models, the chat template takes care of adding the "
|
||
"special tokens so this should be set to false (as is the "
|
||
"default)."
|
||
),
|
||
)
|
||
documents: list[dict[str, str]] | None = Field(
|
||
default=None,
|
||
description=(
|
||
"A list of dicts representing documents that will be accessible to "
|
||
"the model if it is performing RAG (retrieval-augmented generation)."
|
||
" If the template does not support RAG, this argument will have no "
|
||
"effect. We recommend that each document should be a dict containing "
|
||
'"title" and "text" keys.'
|
||
),
|
||
)
|
||
chat_template: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"A Jinja template to use for this conversion. "
|
||
"As of transformers v4.44, default chat template is no longer "
|
||
"allowed, so you must provide a chat template if the tokenizer "
|
||
"does not define one."
|
||
),
|
||
)
|
||
chat_template_kwargs: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description=(
|
||
"Additional keyword args to pass to the template renderer. "
|
||
"Will be accessible by the chat template."
|
||
),
|
||
)
|
||
mm_processor_kwargs: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description=("Additional kwargs to pass to the HF processor."),
|
||
)
|
||
structured_outputs: StructuredOutputsParams | None = Field(
|
||
default=None,
|
||
description="Additional kwargs for structured outputs",
|
||
)
|
||
guided_json: str | dict | BaseModel | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_json` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `json` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
guided_regex: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_regex` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `regex` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
guided_choice: list[str] | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_choice` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `choice` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
guided_grammar: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_grammar` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `grammar` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
structural_tag: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`structural_tag` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `structural_tag` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
guided_decoding_backend: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_decoding_backend` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please remove it from your request."
|
||
),
|
||
)
|
||
guided_whitespace_pattern: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_whitespace_pattern` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `whitespace_pattern` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
priority: int = Field(
|
||
default=0,
|
||
description=(
|
||
"The priority of the request (lower means earlier handling; "
|
||
"default: 0). Any priority other than 0 will raise an error "
|
||
"if the served model does not use priority scheduling."
|
||
),
|
||
)
|
||
request_id: str = Field(
|
||
default_factory=lambda: f"{random_uuid()}",
|
||
description=(
|
||
"The request_id related to this request. If the caller does "
|
||
"not set it, a random_uuid will be generated. This id is used "
|
||
"through out the inference process and return in response."
|
||
),
|
||
)
|
||
logits_processors: LogitsProcessors | None = Field(
|
||
default=None,
|
||
description=(
|
||
"A list of either qualified names of logits processors, or "
|
||
"constructor objects, to apply when sampling. A constructor is "
|
||
"a JSON object with a required 'qualname' field specifying the "
|
||
"qualified name of the processor class/factory, and optional "
|
||
"'args' and 'kwargs' fields containing positional and keyword "
|
||
"arguments. For example: {'qualname': "
|
||
"'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': "
|
||
"{'param': 'value'}}."
|
||
),
|
||
)
|
||
return_tokens_as_token_ids: bool | None = Field(
|
||
default=None,
|
||
description=(
|
||
"If specified with 'logprobs', tokens are represented "
|
||
" as strings of the form 'token_id:{token_id}' so that tokens "
|
||
"that are not JSON-encodable can be identified."
|
||
),
|
||
)
|
||
return_token_ids: bool | None = Field(
|
||
default=None,
|
||
description=(
|
||
"If specified, the result will include token IDs alongside the "
|
||
"generated text. In streaming mode, prompt_token_ids is included "
|
||
"only in the first chunk, and token_ids contains the delta tokens "
|
||
"for each chunk. This is useful for debugging or when you "
|
||
"need to map generated text back to input tokens."
|
||
),
|
||
)
|
||
cache_salt: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"If specified, the prefix cache will be salted with the provided "
|
||
"string to prevent an attacker to guess prompts in multi-user "
|
||
"environments. The salt should be random, protected from "
|
||
"access by 3rd parties, and long enough to be "
|
||
"unpredictable (e.g., 43 characters base64-encoded, corresponding "
|
||
"to 256 bit). Not supported by vLLM engine V0."
|
||
),
|
||
)
|
||
kv_transfer_params: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description="KVTransfer parameters used for disaggregated serving.",
|
||
)
|
||
|
||
vllm_xargs: dict[str, str | int | float] | None = Field(
|
||
default=None,
|
||
description=(
|
||
"Additional request parameters with string or "
|
||
"numeric values, used by custom extensions."
|
||
),
|
||
)
|
||
|
||
# --8<-- [end:chat-completion-extra-params]
|
||
|
||
# Default sampling parameters for chat completion requests
|
||
_DEFAULT_SAMPLING_PARAMS: dict = {
|
||
"repetition_penalty": 1.0,
|
||
"temperature": 1.0,
|
||
"top_p": 1.0,
|
||
"top_k": 0,
|
||
"min_p": 0.0,
|
||
}
|
||
|
||
def to_beam_search_params(
|
||
self, max_tokens: int, default_sampling_params: dict
|
||
) -> BeamSearchParams:
|
||
n = self.n if self.n is not None else 1
|
||
if (temperature := self.temperature) is None:
|
||
temperature = default_sampling_params.get(
|
||
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"]
|
||
)
|
||
|
||
return BeamSearchParams(
|
||
beam_width=n,
|
||
max_tokens=max_tokens,
|
||
ignore_eos=self.ignore_eos,
|
||
temperature=temperature,
|
||
length_penalty=self.length_penalty,
|
||
include_stop_str_in_output=self.include_stop_str_in_output,
|
||
)
|
||
|
||
def to_sampling_params(
|
||
self,
|
||
max_tokens: int,
|
||
logits_processor_pattern: str | None,
|
||
default_sampling_params: dict,
|
||
) -> SamplingParams:
|
||
# Default parameters
|
||
if (repetition_penalty := self.repetition_penalty) is None:
|
||
repetition_penalty = default_sampling_params.get(
|
||
"repetition_penalty",
|
||
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
|
||
)
|
||
if (temperature := self.temperature) is None:
|
||
temperature = default_sampling_params.get(
|
||
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"]
|
||
)
|
||
if (top_p := self.top_p) is None:
|
||
top_p = default_sampling_params.get(
|
||
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"]
|
||
)
|
||
if (top_k := self.top_k) is None:
|
||
top_k = default_sampling_params.get(
|
||
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"]
|
||
)
|
||
if (min_p := self.min_p) is None:
|
||
min_p = default_sampling_params.get(
|
||
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"]
|
||
)
|
||
|
||
prompt_logprobs = self.prompt_logprobs
|
||
if prompt_logprobs is None and self.echo:
|
||
prompt_logprobs = self.top_logprobs
|
||
|
||
# Forward deprecated guided_* parameters to structured_outputs
|
||
if self.structured_outputs is None:
|
||
kwargs = dict[str, Any](
|
||
json=self.guided_json,
|
||
regex=self.guided_regex,
|
||
choice=self.guided_choice,
|
||
grammar=self.guided_grammar,
|
||
whitespace_pattern=self.guided_whitespace_pattern,
|
||
structural_tag=self.structural_tag,
|
||
)
|
||
kwargs = {k: v for k, v in kwargs.items() if v is not None}
|
||
if len(kwargs) > 0:
|
||
self.structured_outputs = StructuredOutputsParams(**kwargs)
|
||
|
||
response_format = self.response_format
|
||
json_schema_from_tool = self._get_json_schema_from_tool()
|
||
if response_format is not None or json_schema_from_tool is not None:
|
||
# If structured outputs wasn't already enabled,
|
||
# we must enable it for these features to work
|
||
if self.structured_outputs is None:
|
||
self.structured_outputs = StructuredOutputsParams()
|
||
|
||
# Set structured output params for response format
|
||
if response_format is not None:
|
||
if response_format.type == "json_object":
|
||
self.structured_outputs.json_object = True
|
||
elif response_format.type == "json_schema":
|
||
json_schema = response_format.json_schema
|
||
assert json_schema is not None
|
||
self.structured_outputs.json = json_schema.json_schema
|
||
elif response_format.type == "structural_tag":
|
||
structural_tag = response_format
|
||
assert structural_tag is not None and isinstance(
|
||
structural_tag, StructuralTagResponseFormat
|
||
)
|
||
s_tag_obj = structural_tag.model_dump(by_alias=True)
|
||
self.structured_outputs.structural_tag = json.dumps(s_tag_obj)
|
||
|
||
# Set structured output params for tool calling
|
||
if json_schema_from_tool is not None:
|
||
self.structured_outputs.json = json_schema_from_tool
|
||
|
||
extra_args: dict[str, Any] = self.vllm_xargs if self.vllm_xargs else {}
|
||
if self.kv_transfer_params:
|
||
# Pass in kv_transfer_params via extra_args
|
||
extra_args["kv_transfer_params"] = self.kv_transfer_params
|
||
return SamplingParams.from_optional(
|
||
n=self.n,
|
||
best_of=self.best_of,
|
||
presence_penalty=self.presence_penalty,
|
||
frequency_penalty=self.frequency_penalty,
|
||
repetition_penalty=repetition_penalty,
|
||
temperature=temperature,
|
||
top_p=top_p,
|
||
top_k=top_k,
|
||
min_p=min_p,
|
||
seed=self.seed,
|
||
stop=self.stop,
|
||
stop_token_ids=self.stop_token_ids,
|
||
logprobs=self.top_logprobs if self.logprobs else None,
|
||
prompt_logprobs=prompt_logprobs,
|
||
ignore_eos=self.ignore_eos,
|
||
max_tokens=max_tokens,
|
||
min_tokens=self.min_tokens,
|
||
skip_special_tokens=self.skip_special_tokens,
|
||
spaces_between_special_tokens=self.spaces_between_special_tokens,
|
||
logits_processors=get_logits_processors(
|
||
self.logits_processors, logits_processor_pattern
|
||
),
|
||
include_stop_str_in_output=self.include_stop_str_in_output,
|
||
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
||
output_kind=RequestOutputKind.DELTA
|
||
if self.stream
|
||
else RequestOutputKind.FINAL_ONLY,
|
||
structured_outputs=self.structured_outputs,
|
||
logit_bias=self.logit_bias,
|
||
bad_words=self.bad_words,
|
||
allowed_token_ids=self.allowed_token_ids,
|
||
extra_args=extra_args or None,
|
||
)
|
||
|
||
def _get_json_schema_from_tool(self) -> str | dict | None:
|
||
# user has chosen to not use any tool
|
||
if self.tool_choice == "none" or self.tools is None:
|
||
return None
|
||
|
||
# user has chosen to use a named tool
|
||
if type(self.tool_choice) is ChatCompletionNamedToolChoiceParam:
|
||
tool_name = self.tool_choice.function.name
|
||
tools = {tool.function.name: tool.function for tool in self.tools}
|
||
if tool_name not in tools:
|
||
raise ValueError(f"Tool '{tool_name}' has not been passed in `tools`.")
|
||
tool = tools[tool_name]
|
||
return tool.parameters
|
||
|
||
if self.tool_choice == "required":
|
||
# Pydantic schema generation cannot be used since the JSON schema
|
||
# has to be constructed for a specific instantiation of a tool list
|
||
# so that parameters of a function are correctly generated
|
||
# based on the chosen function name
|
||
def get_tool_schema(tool: ChatCompletionToolsParam) -> dict:
|
||
return {
|
||
"properties": {
|
||
"name": {"type": "string", "enum": [tool.function.name]},
|
||
# parameters are always generated as '{}' in the final
|
||
# output if they are missing from the request
|
||
# (i.e. are None or '{}') so the schema is
|
||
# updated to produce an empty object in that case
|
||
"parameters": tool.function.parameters
|
||
if tool.function.parameters
|
||
else {"type": "object", "properties": {}},
|
||
},
|
||
"required": ["name", "parameters"],
|
||
}
|
||
|
||
def get_tool_schema_defs(tools: list[ChatCompletionToolsParam]) -> dict:
|
||
all_defs = dict[str, dict[str, Any]]()
|
||
for tool in tools:
|
||
if tool.function.parameters is None:
|
||
continue
|
||
defs = tool.function.parameters.pop("$defs", {})
|
||
for def_name, def_schema in defs.items():
|
||
if def_name in all_defs and all_defs[def_name] != def_schema:
|
||
raise ValueError(
|
||
f"Tool definition '{def_name}' has "
|
||
"multiple schemas, which is not "
|
||
"supported."
|
||
)
|
||
else:
|
||
all_defs[def_name] = def_schema
|
||
return all_defs
|
||
|
||
json_schema = {
|
||
"type": "array",
|
||
"minItems": 1,
|
||
"items": {
|
||
"type": "object",
|
||
"anyOf": [get_tool_schema(tool) for tool in self.tools],
|
||
},
|
||
}
|
||
json_schema_defs = get_tool_schema_defs(self.tools)
|
||
if json_schema_defs:
|
||
json_schema["$defs"] = json_schema_defs
|
||
return json_schema
|
||
|
||
return None
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def validate_stream_options(cls, data):
|
||
if data.get("stream_options") and not data.get("stream"):
|
||
raise ValueError("Stream options can only be defined when `stream=True`.")
|
||
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_logprobs(cls, data):
|
||
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
|
||
if data.get("stream") and (prompt_logprobs > 0 or prompt_logprobs == -1):
|
||
raise ValueError(
|
||
"`prompt_logprobs` are not available when `stream=True`."
|
||
)
|
||
|
||
if prompt_logprobs < 0 and prompt_logprobs != -1:
|
||
raise ValueError("`prompt_logprobs` must be a positive value or -1.")
|
||
if prompt_logprobs == -1 and not envs.VLLM_USE_V1:
|
||
raise ValueError(
|
||
"`prompt_logprobs=-1` is only supported with vLLM engine V1."
|
||
)
|
||
if (top_logprobs := data.get("top_logprobs")) is not None:
|
||
if top_logprobs < 0 and top_logprobs != -1:
|
||
raise ValueError("`top_logprobs` must be a positive value or -1.")
|
||
|
||
if (top_logprobs == -1 or top_logprobs > 0) and not data.get("logprobs"):
|
||
raise ValueError(
|
||
"when using `top_logprobs`, `logprobs` must be set to true."
|
||
)
|
||
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_structured_outputs_count(cls, data):
|
||
if isinstance(data, ValueError):
|
||
raise data
|
||
|
||
if data.get("structured_outputs", None) is None:
|
||
return data
|
||
|
||
structured_outputs_kwargs = data["structured_outputs"]
|
||
count = sum(
|
||
structured_outputs_kwargs.get(k) is not None
|
||
for k in ("json", "regex", "choice")
|
||
)
|
||
# you can only use one kind of constraints for structured outputs
|
||
if count > 1:
|
||
raise ValueError(
|
||
"You can only use one kind of constraints for structured "
|
||
"outputs ('json', 'regex' or 'choice')."
|
||
)
|
||
# you can only either use structured outputs or tools, not both
|
||
if count > 1 and data.get("tool_choice", "none") not in (
|
||
"none",
|
||
"auto",
|
||
"required",
|
||
):
|
||
raise ValueError(
|
||
"You can only either use constraints for structured outputs "
|
||
"or tools, not both."
|
||
)
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_tool_usage(cls, data):
|
||
# if "tool_choice" is not specified but tools are provided,
|
||
# default to "auto" tool_choice
|
||
if "tool_choice" not in data and data.get("tools"):
|
||
data["tool_choice"] = "auto"
|
||
|
||
# if "tool_choice" is "none" -- no validation is needed for tools
|
||
if "tool_choice" in data and data["tool_choice"] == "none":
|
||
return data
|
||
|
||
# if "tool_choice" is specified -- validation
|
||
if "tool_choice" in data and data["tool_choice"] is not None:
|
||
# ensure that if "tool choice" is specified, tools are present
|
||
if "tools" not in data or data["tools"] is None:
|
||
raise ValueError("When using `tool_choice`, `tools` must be set.")
|
||
|
||
# make sure that tool choice is either a named tool
|
||
# OR that it's set to "auto" or "required"
|
||
if data["tool_choice"] not in ["auto", "required"] and not isinstance(
|
||
data["tool_choice"], dict
|
||
):
|
||
raise ValueError(
|
||
f"Invalid value for `tool_choice`: {data['tool_choice']}! "
|
||
'Only named tools, "none", "auto" or "required" '
|
||
"are supported."
|
||
)
|
||
|
||
# if tool_choice is "required" but the "tools" list is empty,
|
||
# override the data to behave like "none" to align with
|
||
# OpenAI’s behavior.
|
||
if (
|
||
data["tool_choice"] == "required"
|
||
and isinstance(data["tools"], list)
|
||
and len(data["tools"]) == 0
|
||
):
|
||
data["tool_choice"] = "none"
|
||
del data["tools"]
|
||
return data
|
||
|
||
# ensure that if "tool_choice" is specified as an object,
|
||
# it matches a valid tool
|
||
correct_usage_message = (
|
||
'Correct usage: `{"type": "function",'
|
||
' "function": {"name": "my_function"}}`'
|
||
)
|
||
if isinstance(data["tool_choice"], dict):
|
||
valid_tool = False
|
||
function = data["tool_choice"].get("function")
|
||
if not isinstance(function, dict):
|
||
raise ValueError(
|
||
f"Invalid value for `function`: `{function}` in "
|
||
f"`tool_choice`! {correct_usage_message}"
|
||
)
|
||
if "name" not in function:
|
||
raise ValueError(
|
||
f"Expected field `name` in `function` in "
|
||
f"`tool_choice`! {correct_usage_message}"
|
||
)
|
||
function_name = function["name"]
|
||
if not isinstance(function_name, str) or len(function_name) == 0:
|
||
raise ValueError(
|
||
f"Invalid `name` in `function`: `{function_name}`"
|
||
f" in `tool_choice`! {correct_usage_message}"
|
||
)
|
||
for tool in data["tools"]:
|
||
if tool["function"]["name"] == function_name:
|
||
valid_tool = True
|
||
break
|
||
if not valid_tool:
|
||
raise ValueError(
|
||
"The tool specified in `tool_choice` does not match any"
|
||
" of the specified `tools`"
|
||
)
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_generation_prompt(cls, data):
|
||
if data.get("continue_final_message") and data.get("add_generation_prompt"):
|
||
raise ValueError(
|
||
"Cannot set both `continue_final_message` and "
|
||
"`add_generation_prompt` to True."
|
||
)
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_cache_salt_support(cls, data):
|
||
if data.get("cache_salt") is not None:
|
||
if not envs.VLLM_USE_V1:
|
||
raise ValueError(
|
||
"Parameter 'cache_salt' is not supported with "
|
||
"this instance of vLLM, which uses engine V0."
|
||
)
|
||
if not isinstance(data["cache_salt"], str) or not data["cache_salt"]:
|
||
raise ValueError(
|
||
"Parameter 'cache_salt' must be a non-empty string if provided."
|
||
)
|
||
return data
|
||
|
||
|
||
class CompletionRequest(OpenAIBaseModel):
|
||
# Ordered by official OpenAI API documentation
|
||
# https://platform.openai.com/docs/api-reference/completions/create
|
||
model: str | None = None
|
||
prompt: list[int] | list[list[int]] | str | list[str] | None = None
|
||
best_of: int | None = None
|
||
echo: bool | None = False
|
||
frequency_penalty: float | None = 0.0
|
||
logit_bias: dict[str, float] | None = None
|
||
logprobs: int | None = None
|
||
max_tokens: int | None = 16
|
||
n: int = 1
|
||
presence_penalty: float | None = 0.0
|
||
seed: int | None = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
|
||
stop: str | list[str] | None = []
|
||
stream: bool | None = False
|
||
stream_options: StreamOptions | None = None
|
||
suffix: str | None = None
|
||
temperature: float | None = None
|
||
top_p: float | None = None
|
||
user: str | None = None
|
||
|
||
# --8<-- [start:completion-sampling-params]
|
||
use_beam_search: bool = False
|
||
top_k: int | None = None
|
||
min_p: float | None = None
|
||
repetition_penalty: float | None = None
|
||
length_penalty: float = 1.0
|
||
stop_token_ids: list[int] | None = []
|
||
include_stop_str_in_output: bool = False
|
||
ignore_eos: bool = False
|
||
min_tokens: int = 0
|
||
skip_special_tokens: bool = True
|
||
spaces_between_special_tokens: bool = True
|
||
truncate_prompt_tokens: Annotated[int, Field(ge=-1)] | None = None
|
||
allowed_token_ids: list[int] | None = None
|
||
prompt_logprobs: int | None = None
|
||
# --8<-- [end:completion-sampling-params]
|
||
|
||
# --8<-- [start:completion-extra-params]
|
||
prompt_embeds: bytes | list[bytes] | None = None
|
||
add_special_tokens: bool = Field(
|
||
default=True,
|
||
description=(
|
||
"If true (the default), special tokens (e.g. BOS) will be added to "
|
||
"the prompt."
|
||
),
|
||
)
|
||
response_format: AnyResponseFormat | None = Field(
|
||
default=None,
|
||
description=(
|
||
"Similar to chat completion, this parameter specifies the format "
|
||
"of output. Only {'type': 'json_object'}, {'type': 'json_schema'}"
|
||
", {'type': 'structural_tag'}, or {'type': 'text' } is supported."
|
||
),
|
||
)
|
||
structured_outputs: StructuredOutputsParams | None = Field(
|
||
default=None,
|
||
description="Additional kwargs for structured outputs",
|
||
)
|
||
guided_json: str | dict | BaseModel | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_json` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `json` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
guided_regex: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_regex` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `regex` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
guided_choice: list[str] | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_choice` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `choice` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
guided_grammar: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_grammar` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `grammar` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
structural_tag: str | None = Field(
|
||
default=None,
|
||
description=("If specified, the output will follow the structural tag schema."),
|
||
)
|
||
guided_decoding_backend: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_decoding_backend` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please remove it from your request."
|
||
),
|
||
)
|
||
guided_whitespace_pattern: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"`guided_whitespace_pattern` is deprecated. "
|
||
"This will be removed in v0.12.0 or v1.0.0, whichever is soonest. "
|
||
"Please pass `whitespace_pattern` to `structured_outputs` instead."
|
||
),
|
||
)
|
||
priority: int = Field(
|
||
default=0,
|
||
description=(
|
||
"The priority of the request (lower means earlier handling; "
|
||
"default: 0). Any priority other than 0 will raise an error "
|
||
"if the served model does not use priority scheduling."
|
||
),
|
||
)
|
||
request_id: str = Field(
|
||
default_factory=lambda: f"{random_uuid()}",
|
||
description=(
|
||
"The request_id related to this request. If the caller does "
|
||
"not set it, a random_uuid will be generated. This id is used "
|
||
"through out the inference process and return in response."
|
||
),
|
||
)
|
||
logits_processors: LogitsProcessors | None = Field(
|
||
default=None,
|
||
description=(
|
||
"A list of either qualified names of logits processors, or "
|
||
"constructor objects, to apply when sampling. A constructor is "
|
||
"a JSON object with a required 'qualname' field specifying the "
|
||
"qualified name of the processor class/factory, and optional "
|
||
"'args' and 'kwargs' fields containing positional and keyword "
|
||
"arguments. For example: {'qualname': "
|
||
"'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': "
|
||
"{'param': 'value'}}."
|
||
),
|
||
)
|
||
|
||
return_tokens_as_token_ids: bool | None = Field(
|
||
default=None,
|
||
description=(
|
||
"If specified with 'logprobs', tokens are represented "
|
||
" as strings of the form 'token_id:{token_id}' so that tokens "
|
||
"that are not JSON-encodable can be identified."
|
||
),
|
||
)
|
||
return_token_ids: bool | None = Field(
|
||
default=None,
|
||
description=(
|
||
"If specified, the result will include token IDs alongside the "
|
||
"generated text. In streaming mode, prompt_token_ids is included "
|
||
"only in the first chunk, and token_ids contains the delta tokens "
|
||
"for each chunk. This is useful for debugging or when you "
|
||
"need to map generated text back to input tokens."
|
||
),
|
||
)
|
||
|
||
cache_salt: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"If specified, the prefix cache will be salted with the provided "
|
||
"string to prevent an attacker to guess prompts in multi-user "
|
||
"environments. The salt should be random, protected from "
|
||
"access by 3rd parties, and long enough to be "
|
||
"unpredictable (e.g., 43 characters base64-encoded, corresponding "
|
||
"to 256 bit). Not supported by vLLM engine V0."
|
||
),
|
||
)
|
||
|
||
kv_transfer_params: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description="KVTransfer parameters used for disaggregated serving.",
|
||
)
|
||
|
||
vllm_xargs: dict[str, str | int | float] | None = Field(
|
||
default=None,
|
||
description=(
|
||
"Additional request parameters with string or "
|
||
"numeric values, used by custom extensions."
|
||
),
|
||
)
|
||
|
||
# --8<-- [end:completion-extra-params]
|
||
|
||
# Default sampling parameters for completion requests
|
||
_DEFAULT_SAMPLING_PARAMS: dict = {
|
||
"repetition_penalty": 1.0,
|
||
"temperature": 1.0,
|
||
"top_p": 1.0,
|
||
"top_k": 0,
|
||
"min_p": 0.0,
|
||
}
|
||
|
||
def to_beam_search_params(
|
||
self,
|
||
max_tokens: int,
|
||
default_sampling_params: dict | None = None,
|
||
) -> BeamSearchParams:
|
||
if default_sampling_params is None:
|
||
default_sampling_params = {}
|
||
n = self.n if self.n is not None else 1
|
||
|
||
if (temperature := self.temperature) is None:
|
||
temperature = default_sampling_params.get("temperature", 1.0)
|
||
|
||
return BeamSearchParams(
|
||
beam_width=n,
|
||
max_tokens=max_tokens,
|
||
ignore_eos=self.ignore_eos,
|
||
temperature=temperature,
|
||
length_penalty=self.length_penalty,
|
||
include_stop_str_in_output=self.include_stop_str_in_output,
|
||
)
|
||
|
||
def to_sampling_params(
|
||
self,
|
||
max_tokens: int,
|
||
logits_processor_pattern: str | None,
|
||
default_sampling_params: dict | None = None,
|
||
) -> SamplingParams:
|
||
if default_sampling_params is None:
|
||
default_sampling_params = {}
|
||
|
||
# Default parameters
|
||
if (repetition_penalty := self.repetition_penalty) is None:
|
||
repetition_penalty = default_sampling_params.get(
|
||
"repetition_penalty",
|
||
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
|
||
)
|
||
if (temperature := self.temperature) is None:
|
||
temperature = default_sampling_params.get(
|
||
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"]
|
||
)
|
||
if (top_p := self.top_p) is None:
|
||
top_p = default_sampling_params.get(
|
||
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"]
|
||
)
|
||
if (top_k := self.top_k) is None:
|
||
top_k = default_sampling_params.get(
|
||
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"]
|
||
)
|
||
if (min_p := self.min_p) is None:
|
||
min_p = default_sampling_params.get(
|
||
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"]
|
||
)
|
||
|
||
prompt_logprobs = self.prompt_logprobs
|
||
if prompt_logprobs is None and self.echo:
|
||
prompt_logprobs = self.logprobs
|
||
|
||
echo_without_generation = self.echo and self.max_tokens == 0
|
||
|
||
guided_json_object = None
|
||
if self.response_format is not None:
|
||
if self.response_format.type == "json_object":
|
||
guided_json_object = True
|
||
elif self.response_format.type == "json_schema":
|
||
json_schema = self.response_format.json_schema
|
||
assert json_schema is not None
|
||
self.guided_json = json_schema.json_schema
|
||
elif self.response_format.type == "structural_tag":
|
||
structural_tag = self.response_format
|
||
assert structural_tag is not None and isinstance(
|
||
structural_tag, StructuralTagResponseFormat
|
||
)
|
||
s_tag_obj = structural_tag.model_dump(by_alias=True)
|
||
self.structural_tag = json.dumps(s_tag_obj)
|
||
|
||
# Forward deprecated guided_* parameters to structured_outputs
|
||
if self.structured_outputs is None:
|
||
kwargs = dict[str, Any](
|
||
json=self.guided_json,
|
||
json_object=guided_json_object,
|
||
regex=self.guided_regex,
|
||
choice=self.guided_choice,
|
||
grammar=self.guided_grammar,
|
||
whitespace_pattern=self.guided_whitespace_pattern,
|
||
)
|
||
kwargs = {k: v for k, v in kwargs.items() if v is not None}
|
||
if len(kwargs) > 0:
|
||
self.structured_outputs = StructuredOutputsParams(**kwargs)
|
||
|
||
extra_args: dict[str, Any] = self.vllm_xargs if self.vllm_xargs else {}
|
||
if self.kv_transfer_params:
|
||
# Pass in kv_transfer_params via extra_args
|
||
extra_args["kv_transfer_params"] = self.kv_transfer_params
|
||
return SamplingParams.from_optional(
|
||
n=self.n,
|
||
best_of=self.best_of,
|
||
presence_penalty=self.presence_penalty,
|
||
frequency_penalty=self.frequency_penalty,
|
||
repetition_penalty=repetition_penalty,
|
||
temperature=temperature,
|
||
top_p=top_p,
|
||
top_k=top_k,
|
||
min_p=min_p,
|
||
seed=self.seed,
|
||
stop=self.stop,
|
||
stop_token_ids=self.stop_token_ids,
|
||
logprobs=self.logprobs,
|
||
ignore_eos=self.ignore_eos,
|
||
max_tokens=max_tokens if not echo_without_generation else 1,
|
||
min_tokens=self.min_tokens,
|
||
prompt_logprobs=prompt_logprobs,
|
||
skip_special_tokens=self.skip_special_tokens,
|
||
spaces_between_special_tokens=self.spaces_between_special_tokens,
|
||
include_stop_str_in_output=self.include_stop_str_in_output,
|
||
logits_processors=get_logits_processors(
|
||
self.logits_processors, logits_processor_pattern
|
||
),
|
||
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
||
output_kind=RequestOutputKind.DELTA
|
||
if self.stream
|
||
else RequestOutputKind.FINAL_ONLY,
|
||
structured_outputs=self.structured_outputs,
|
||
logit_bias=self.logit_bias,
|
||
allowed_token_ids=self.allowed_token_ids,
|
||
extra_args=extra_args or None,
|
||
)
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_structured_outputs_count(cls, data):
|
||
if data.get("structured_outputs", None) is None:
|
||
return data
|
||
|
||
structured_outputs_kwargs = data["structured_outputs"]
|
||
count = sum(
|
||
structured_outputs_kwargs.get(k) is not None
|
||
for k in ("json", "regex", "choice")
|
||
)
|
||
if count > 1:
|
||
raise ValueError(
|
||
"You can only use one kind of constraints for structured "
|
||
"outputs ('json', 'regex' or 'choice')."
|
||
)
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_logprobs(cls, data):
|
||
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
|
||
if data.get("stream") and (prompt_logprobs > 0 or prompt_logprobs == -1):
|
||
raise ValueError(
|
||
"`prompt_logprobs` are not available when `stream=True`."
|
||
)
|
||
|
||
if prompt_logprobs < 0 and prompt_logprobs != -1:
|
||
raise ValueError("`prompt_logprobs` must be a positive value or -1.")
|
||
if prompt_logprobs == -1 and not envs.VLLM_USE_V1:
|
||
raise ValueError(
|
||
"`prompt_logprobs=-1` is only supported with vLLM engine V1."
|
||
)
|
||
if (logprobs := data.get("logprobs")) is not None and logprobs < 0:
|
||
raise ValueError("`logprobs` must be a positive value.")
|
||
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def validate_stream_options(cls, data):
|
||
if data.get("stream_options") and not data.get("stream"):
|
||
raise ValueError("Stream options can only be defined when `stream=True`.")
|
||
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def validate_prompt_and_prompt_embeds(cls, data):
|
||
prompt = data.get("prompt")
|
||
prompt_embeds = data.get("prompt_embeds")
|
||
|
||
prompt_is_empty = prompt is None or (isinstance(prompt, str) and prompt == "")
|
||
embeds_is_empty = prompt_embeds is None or (
|
||
isinstance(prompt_embeds, list) and len(prompt_embeds) == 0
|
||
)
|
||
|
||
if prompt_is_empty and embeds_is_empty:
|
||
raise ValueError(
|
||
"Either prompt or prompt_embeds must be provided and non-empty."
|
||
)
|
||
|
||
return data
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_cache_salt_support(cls, data):
|
||
if data.get("cache_salt") is not None:
|
||
if not envs.VLLM_USE_V1:
|
||
raise ValueError(
|
||
"Parameter 'cache_salt' is not supported with "
|
||
"this instance of vLLM, which uses engine V0."
|
||
)
|
||
if not isinstance(data["cache_salt"], str) or not data["cache_salt"]:
|
||
raise ValueError(
|
||
"Parameter 'cache_salt' must be a non-empty string if provided."
|
||
)
|
||
return data
|
||
|
||
|
||
class EmbeddingCompletionRequest(OpenAIBaseModel):
|
||
# Ordered by official OpenAI API documentation
|
||
# https://platform.openai.com/docs/api-reference/embeddings
|
||
model: str | None = None
|
||
input: list[int] | list[list[int]] | str | list[str]
|
||
encoding_format: Literal["float", "base64"] = "float"
|
||
dimensions: int | None = None
|
||
user: str | None = None
|
||
truncate_prompt_tokens: Annotated[int, Field(ge=-1)] | None = None
|
||
|
||
# --8<-- [start:embedding-extra-params]
|
||
add_special_tokens: bool = Field(
|
||
default=True,
|
||
description=(
|
||
"If true (the default), special tokens (e.g. BOS) will be added to "
|
||
"the prompt."
|
||
),
|
||
)
|
||
priority: int = Field(
|
||
default=0,
|
||
description=(
|
||
"The priority of the request (lower means earlier handling; "
|
||
"default: 0). Any priority other than 0 will raise an error "
|
||
"if the served model does not use priority scheduling."
|
||
),
|
||
)
|
||
request_id: str = Field(
|
||
default_factory=lambda: f"{random_uuid()}",
|
||
description=(
|
||
"The request_id related to this request. If the caller does "
|
||
"not set it, a random_uuid will be generated. This id is used "
|
||
"through out the inference process and return in response."
|
||
),
|
||
)
|
||
normalize: bool | None = Field(
|
||
default=None,
|
||
description="Whether to normalize the embeddings outputs. Default is True.",
|
||
)
|
||
embed_dtype: str = Field(
|
||
default="float32",
|
||
description=(
|
||
"What dtype to use for base64 encoding. Default to using "
|
||
"float32 for base64 encoding to match the OpenAI python client behavior."
|
||
),
|
||
)
|
||
# --8<-- [end:embedding-extra-params]
|
||
|
||
def to_pooling_params(self):
|
||
return PoolingParams(
|
||
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
||
dimensions=self.dimensions,
|
||
normalize=self.normalize,
|
||
)
|
||
|
||
|
||
class EmbeddingChatRequest(OpenAIBaseModel):
|
||
model: str | None = None
|
||
messages: list[ChatCompletionMessageParam]
|
||
|
||
encoding_format: Literal["float", "base64"] = "float"
|
||
dimensions: int | None = None
|
||
user: str | None = None
|
||
truncate_prompt_tokens: Annotated[int, Field(ge=-1)] | None = None
|
||
|
||
# --8<-- [start:chat-embedding-extra-params]
|
||
add_generation_prompt: bool = Field(
|
||
default=False,
|
||
description=(
|
||
"If true, the generation prompt will be added to the chat template. "
|
||
"This is a parameter used by chat template in tokenizer config of the "
|
||
"model."
|
||
),
|
||
)
|
||
|
||
add_special_tokens: bool = Field(
|
||
default=False,
|
||
description=(
|
||
"If true, special tokens (e.g. BOS) will be added to the prompt "
|
||
"on top of what is added by the chat template. "
|
||
"For most models, the chat template takes care of adding the "
|
||
"special tokens so this should be set to false (as is the "
|
||
"default)."
|
||
),
|
||
)
|
||
chat_template: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"A Jinja template to use for this conversion. "
|
||
"As of transformers v4.44, default chat template is no longer "
|
||
"allowed, so you must provide a chat template if the tokenizer "
|
||
"does not define one."
|
||
),
|
||
)
|
||
chat_template_kwargs: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description=(
|
||
"Additional keyword args to pass to the template renderer. "
|
||
"Will be accessible by the chat template."
|
||
),
|
||
)
|
||
mm_processor_kwargs: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description=("Additional kwargs to pass to the HF processor."),
|
||
)
|
||
priority: int = Field(
|
||
default=0,
|
||
description=(
|
||
"The priority of the request (lower means earlier handling; "
|
||
"default: 0). Any priority other than 0 will raise an error "
|
||
"if the served model does not use priority scheduling."
|
||
),
|
||
)
|
||
request_id: str = Field(
|
||
default_factory=lambda: f"{random_uuid()}",
|
||
description=(
|
||
"The request_id related to this request. If the caller does "
|
||
"not set it, a random_uuid will be generated. This id is used "
|
||
"through out the inference process and return in response."
|
||
),
|
||
)
|
||
normalize: bool | None = Field(
|
||
default=None,
|
||
description="Whether to normalize the embeddings outputs. Default is True.",
|
||
)
|
||
embed_dtype: str = Field(
|
||
default="float32",
|
||
description=(
|
||
"Which dtype to use for base64 encoding. Defaults to float32 "
|
||
"to match OpenAI API."
|
||
),
|
||
)
|
||
# --8<-- [end:chat-embedding-extra-params]
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_generation_prompt(cls, data):
|
||
if data.get("continue_final_message") and data.get("add_generation_prompt"):
|
||
raise ValueError(
|
||
"Cannot set both `continue_final_message` and "
|
||
"`add_generation_prompt` to True."
|
||
)
|
||
return data
|
||
|
||
def to_pooling_params(self):
|
||
return PoolingParams(
|
||
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
||
dimensions=self.dimensions,
|
||
normalize=self.normalize,
|
||
)
|
||
|
||
|
||
EmbeddingRequest: TypeAlias = EmbeddingCompletionRequest | EmbeddingChatRequest
|
||
|
||
PoolingCompletionRequest = EmbeddingCompletionRequest
|
||
PoolingChatRequest = EmbeddingChatRequest
|
||
|
||
T = TypeVar("T")
|
||
|
||
|
||
class IOProcessorRequest(OpenAIBaseModel, Generic[T]):
|
||
model: str | None = None
|
||
|
||
priority: int = Field(default=0)
|
||
"""
|
||
The priority of the request (lower means earlier handling;
|
||
default: 0). Any priority other than 0 will raise an error
|
||
if the served model does not use priority scheduling.
|
||
"""
|
||
data: T
|
||
"""
|
||
When using plugins IOProcessor plugins, the actual input is processed
|
||
by the plugin itself. Hence, we use a generic type for the request data
|
||
"""
|
||
activation: bool = False
|
||
|
||
embed_dtype: str = Field(
|
||
default="float32",
|
||
description=(
|
||
"What dtype to use for base64 encoding. Default to using "
|
||
"float32 for base64 encoding to match the OpenAI python client behavior."
|
||
),
|
||
)
|
||
|
||
def to_pooling_params(self):
|
||
return PoolingParams(task="token_classify", activation=self.activation)
|
||
|
||
|
||
class IOProcessorResponse(OpenAIBaseModel, Generic[T]):
|
||
request_id: str | None = None
|
||
"""
|
||
The request_id associated with this response
|
||
"""
|
||
created_at: int = Field(default_factory=lambda: int(time.time()))
|
||
|
||
data: T
|
||
"""
|
||
When using plugins IOProcessor plugins, the actual output is generated
|
||
by the plugin itself. Hence, we use a generic type for the response data
|
||
"""
|
||
|
||
|
||
PoolingRequest: TypeAlias = (
|
||
PoolingCompletionRequest | PoolingChatRequest | IOProcessorRequest
|
||
)
|
||
|
||
|
||
class ScoreRequest(OpenAIBaseModel):
|
||
model: str | None = None
|
||
text_1: list[str] | str | ScoreMultiModalParam
|
||
text_2: list[str] | str | ScoreMultiModalParam
|
||
truncate_prompt_tokens: Annotated[int, Field(ge=-1)] | None = None
|
||
|
||
# --8<-- [start:score-extra-params]
|
||
|
||
mm_processor_kwargs: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description=("Additional kwargs to pass to the HF processor."),
|
||
)
|
||
|
||
priority: int = Field(
|
||
default=0,
|
||
description=(
|
||
"The priority of the request (lower means earlier handling; "
|
||
"default: 0). Any priority other than 0 will raise an error "
|
||
"if the served model does not use priority scheduling."
|
||
),
|
||
)
|
||
|
||
activation: bool | None = None
|
||
|
||
# --8<-- [end:score-extra-params]
|
||
|
||
def to_pooling_params(self):
|
||
return PoolingParams(
|
||
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
||
activation=self.activation,
|
||
)
|
||
|
||
|
||
class RerankRequest(OpenAIBaseModel):
|
||
model: str | None = None
|
||
query: str | ScoreMultiModalParam
|
||
documents: list[str] | ScoreMultiModalParam
|
||
top_n: int = Field(default_factory=lambda: 0)
|
||
truncate_prompt_tokens: Annotated[int, Field(ge=-1)] | None = None
|
||
|
||
# --8<-- [start:rerank-extra-params]
|
||
|
||
mm_processor_kwargs: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description=("Additional kwargs to pass to the HF processor."),
|
||
)
|
||
|
||
priority: int = Field(
|
||
default=0,
|
||
description=(
|
||
"The priority of the request (lower means earlier handling; "
|
||
"default: 0). Any priority other than 0 will raise an error "
|
||
"if the served model does not use priority scheduling."
|
||
),
|
||
)
|
||
|
||
activation: bool | None = None
|
||
|
||
# --8<-- [end:rerank-extra-params]
|
||
|
||
def to_pooling_params(self):
|
||
return PoolingParams(
|
||
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
||
activation=self.activation,
|
||
)
|
||
|
||
|
||
class RerankDocument(BaseModel):
|
||
text: str | None = None
|
||
multi_modal: ScoreContentPartParam | None = None
|
||
|
||
|
||
class RerankResult(BaseModel):
|
||
index: int
|
||
document: RerankDocument
|
||
relevance_score: float
|
||
|
||
|
||
class RerankUsage(BaseModel):
|
||
total_tokens: int
|
||
|
||
|
||
class RerankResponse(OpenAIBaseModel):
|
||
id: str
|
||
model: str
|
||
usage: RerankUsage
|
||
results: list[RerankResult]
|
||
|
||
|
||
class CompletionLogProbs(OpenAIBaseModel):
|
||
text_offset: list[int] = Field(default_factory=list)
|
||
token_logprobs: list[float | None] = Field(default_factory=list)
|
||
tokens: list[str] = Field(default_factory=list)
|
||
top_logprobs: list[dict[str, float] | None] = Field(default_factory=list)
|
||
|
||
|
||
class CompletionResponseChoice(OpenAIBaseModel):
|
||
index: int
|
||
text: str
|
||
logprobs: CompletionLogProbs | None = None
|
||
finish_reason: str | None = None
|
||
stop_reason: int | str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"The stop string or token id that caused the completion "
|
||
"to stop, None if the completion finished for some other reason "
|
||
"including encountering the EOS token"
|
||
),
|
||
)
|
||
token_ids: list[int] | None = None # For response
|
||
prompt_logprobs: list[dict[int, Logprob] | None] | None = None
|
||
prompt_token_ids: list[int] | None = None # For prompt
|
||
|
||
|
||
class CompletionResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
||
object: Literal["text_completion"] = "text_completion"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
choices: list[CompletionResponseChoice]
|
||
service_tier: Literal["auto", "default", "flex", "scale", "priority"] | None = None
|
||
system_fingerprint: str | None = None
|
||
usage: UsageInfo
|
||
|
||
# vLLM-specific fields that are not in OpenAI spec
|
||
kv_transfer_params: dict[str, Any] | None = Field(
|
||
default=None, description="KVTransfer parameters."
|
||
)
|
||
|
||
|
||
class CompletionResponseStreamChoice(OpenAIBaseModel):
|
||
index: int
|
||
text: str
|
||
logprobs: CompletionLogProbs | None = None
|
||
finish_reason: str | None = None
|
||
stop_reason: int | str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"The stop string or token id that caused the completion "
|
||
"to stop, None if the completion finished for some other reason "
|
||
"including encountering the EOS token"
|
||
),
|
||
)
|
||
# not part of the OpenAI spec but for tracing the tokens
|
||
# prompt tokens is put into choice to align with CompletionResponseChoice
|
||
prompt_token_ids: list[int] | None = None
|
||
token_ids: list[int] | None = None
|
||
|
||
|
||
class CompletionStreamResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
||
object: str = "text_completion"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
choices: list[CompletionResponseStreamChoice]
|
||
usage: UsageInfo | None = Field(default=None)
|
||
|
||
|
||
class EmbeddingResponseData(OpenAIBaseModel):
|
||
index: int
|
||
object: str = "embedding"
|
||
embedding: list[float] | str
|
||
|
||
|
||
class EmbeddingResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"embd-{random_uuid()}")
|
||
object: str = "list"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
data: list[EmbeddingResponseData]
|
||
usage: UsageInfo
|
||
|
||
|
||
class PoolingResponseData(OpenAIBaseModel):
|
||
index: int
|
||
object: str = "pooling"
|
||
data: list[list[float]] | list[float] | str
|
||
|
||
|
||
class PoolingResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"pool-{random_uuid()}")
|
||
object: str = "list"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
data: list[PoolingResponseData]
|
||
usage: UsageInfo
|
||
|
||
|
||
class ScoreResponseData(OpenAIBaseModel):
|
||
index: int
|
||
object: str = "score"
|
||
score: float
|
||
|
||
|
||
class ScoreResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"embd-{random_uuid()}")
|
||
object: str = "list"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
data: list[ScoreResponseData]
|
||
usage: UsageInfo
|
||
|
||
|
||
class ClassificationRequest(OpenAIBaseModel):
|
||
model: str | None = None
|
||
input: list[str] | str
|
||
truncate_prompt_tokens: int | None = None
|
||
user: str | None = None
|
||
|
||
# --8<-- [start:classification-extra-params]
|
||
priority: int = Field(
|
||
default=0,
|
||
description=(
|
||
"The priority of the request (lower means earlier handling; "
|
||
"default: 0). Any priority other than 0 will raise an error "
|
||
"if the served model does not use priority scheduling."
|
||
),
|
||
)
|
||
|
||
activation: bool | None = None
|
||
|
||
# --8<-- [end:classification-extra-params]
|
||
|
||
def to_pooling_params(self):
|
||
return PoolingParams(
|
||
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
||
activation=self.activation,
|
||
)
|
||
|
||
|
||
class ClassificationData(OpenAIBaseModel):
|
||
index: int
|
||
label: str | None
|
||
probs: list[float]
|
||
num_classes: int
|
||
|
||
|
||
class ClassificationResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"classify-{random_uuid()}")
|
||
object: str = "list"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
data: list[ClassificationData]
|
||
usage: UsageInfo
|
||
|
||
|
||
class FunctionCall(OpenAIBaseModel):
|
||
name: str
|
||
arguments: str
|
||
|
||
|
||
class ToolCall(OpenAIBaseModel):
|
||
id: str = Field(default_factory=make_tool_call_id)
|
||
type: Literal["function"] = "function"
|
||
function: FunctionCall
|
||
|
||
|
||
class DeltaFunctionCall(BaseModel):
|
||
name: str | None = None
|
||
arguments: str | None = None
|
||
|
||
|
||
# a tool call delta where everything is optional
|
||
class DeltaToolCall(OpenAIBaseModel):
|
||
id: str | None = None
|
||
type: Literal["function"] | None = None
|
||
index: int
|
||
function: DeltaFunctionCall | None = None
|
||
|
||
|
||
class ExtractedToolCallInformation(BaseModel):
|
||
# indicate if tools were called
|
||
tools_called: bool
|
||
|
||
# extracted tool calls
|
||
tool_calls: list[ToolCall]
|
||
|
||
# content - per OpenAI spec, content AND tool calls can be returned rarely
|
||
# But some models will do this intentionally
|
||
content: str | None = None
|
||
|
||
|
||
class ChatMessage(OpenAIBaseModel):
|
||
role: str
|
||
content: str | None = None
|
||
refusal: str | None = None
|
||
annotations: OpenAIAnnotation | None = None
|
||
audio: OpenAIChatCompletionAudio | None = None
|
||
function_call: FunctionCall | None = None
|
||
tool_calls: list[ToolCall] = Field(default_factory=list)
|
||
|
||
# vLLM-specific fields that are not in OpenAI spec
|
||
reasoning_content: str | None = None
|
||
|
||
|
||
class ChatCompletionLogProb(OpenAIBaseModel):
|
||
token: str
|
||
logprob: float = -9999.0
|
||
bytes: list[int] | None = None
|
||
|
||
|
||
class ChatCompletionLogProbsContent(ChatCompletionLogProb):
|
||
# Workaround: redefine fields name cache so that it's not
|
||
# shared with the super class.
|
||
field_names: ClassVar[set[str] | None] = None
|
||
top_logprobs: list[ChatCompletionLogProb] = Field(default_factory=list)
|
||
|
||
|
||
class ChatCompletionLogProbs(OpenAIBaseModel):
|
||
content: list[ChatCompletionLogProbsContent] | None = None
|
||
|
||
|
||
class ChatCompletionResponseChoice(OpenAIBaseModel):
|
||
index: int
|
||
message: ChatMessage
|
||
logprobs: ChatCompletionLogProbs | None = None
|
||
# per OpenAI spec this is the default
|
||
finish_reason: str | None = "stop"
|
||
# not part of the OpenAI spec but included in vLLM for legacy reasons
|
||
stop_reason: int | str | None = None
|
||
# not part of the OpenAI spec but is useful for tracing the tokens
|
||
# in agent scenarios
|
||
token_ids: list[int] | None = None
|
||
|
||
|
||
class ChatCompletionResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
||
object: Literal["chat.completion"] = "chat.completion"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
choices: list[ChatCompletionResponseChoice]
|
||
service_tier: Literal["auto", "default", "flex", "scale", "priority"] | None = None
|
||
system_fingerprint: str | None = None
|
||
usage: UsageInfo
|
||
|
||
# vLLM-specific fields that are not in OpenAI spec
|
||
prompt_logprobs: list[dict[int, Logprob] | None] | None = None
|
||
prompt_token_ids: list[int] | None = None
|
||
kv_transfer_params: dict[str, Any] | None = Field(
|
||
default=None, description="KVTransfer parameters."
|
||
)
|
||
|
||
|
||
class DeltaMessage(OpenAIBaseModel):
|
||
role: str | None = None
|
||
content: str | None = None
|
||
reasoning_content: str | None = None
|
||
tool_calls: list[DeltaToolCall] = Field(default_factory=list)
|
||
|
||
|
||
class ChatCompletionResponseStreamChoice(OpenAIBaseModel):
|
||
index: int
|
||
delta: DeltaMessage
|
||
logprobs: ChatCompletionLogProbs | None = None
|
||
finish_reason: str | None = None
|
||
stop_reason: int | str | None = None
|
||
# not part of the OpenAI spec but for tracing the tokens
|
||
token_ids: list[int] | None = None
|
||
|
||
|
||
class ChatCompletionStreamResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
||
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
choices: list[ChatCompletionResponseStreamChoice]
|
||
usage: UsageInfo | None = Field(default=None)
|
||
# not part of the OpenAI spec but for tracing the tokens
|
||
prompt_token_ids: list[int] | None = None
|
||
|
||
|
||
class TranscriptionResponseStreamChoice(OpenAIBaseModel):
|
||
delta: DeltaMessage
|
||
finish_reason: str | None = None
|
||
stop_reason: int | str | None = None
|
||
|
||
|
||
class TranscriptionStreamResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"trsc-{random_uuid()}")
|
||
object: Literal["transcription.chunk"] = "transcription.chunk"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
choices: list[TranscriptionResponseStreamChoice]
|
||
usage: UsageInfo | None = Field(default=None)
|
||
|
||
|
||
class InputTokensDetails(OpenAIBaseModel):
|
||
cached_tokens: int
|
||
input_tokens_per_turn: list[int] = Field(default_factory=list)
|
||
cached_tokens_per_turn: list[int] = Field(default_factory=list)
|
||
|
||
|
||
class OutputTokensDetails(OpenAIBaseModel):
|
||
reasoning_tokens: int = 0
|
||
tool_output_tokens: int = 0
|
||
output_tokens_per_turn: list[int] = Field(default_factory=list)
|
||
tool_output_tokens_per_turn: list[int] = Field(default_factory=list)
|
||
|
||
|
||
class ResponseUsage(OpenAIBaseModel):
|
||
input_tokens: int
|
||
input_tokens_details: InputTokensDetails
|
||
output_tokens: int
|
||
output_tokens_details: OutputTokensDetails
|
||
total_tokens: int
|
||
|
||
|
||
def serialize_message(msg):
|
||
"""
|
||
Serializes a single message
|
||
"""
|
||
if isinstance(msg, dict):
|
||
return msg
|
||
elif hasattr(msg, "to_dict"):
|
||
return msg.to_dict()
|
||
else:
|
||
# fallback to pyandic dump
|
||
return msg.model_dump_json()
|
||
|
||
|
||
def serialize_messages(msgs):
|
||
"""
|
||
Serializes multiple messages
|
||
"""
|
||
return [serialize_message(msg) for msg in msgs] if msgs else None
|
||
|
||
|
||
class ResponsesResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"resp_{random_uuid()}")
|
||
created_at: int = Field(default_factory=lambda: int(time.time()))
|
||
# error: Optional[ResponseError] = None
|
||
incomplete_details: IncompleteDetails | None = None
|
||
instructions: str | None = None
|
||
metadata: Metadata | None = None
|
||
model: str
|
||
object: Literal["response"] = "response"
|
||
output: list[ResponseOutputItem]
|
||
parallel_tool_calls: bool
|
||
temperature: float
|
||
tool_choice: ToolChoice
|
||
tools: list[Tool]
|
||
top_p: float
|
||
background: bool
|
||
max_output_tokens: int
|
||
max_tool_calls: int | None = None
|
||
previous_response_id: str | None = None
|
||
prompt: ResponsePrompt | None = None
|
||
reasoning: Reasoning | None = None
|
||
service_tier: Literal["auto", "default", "flex", "scale", "priority"]
|
||
status: ResponseStatus
|
||
text: ResponseTextConfig | None = None
|
||
top_logprobs: int | None = None
|
||
truncation: Literal["auto", "disabled"]
|
||
usage: ResponseUsage | None = None
|
||
user: str | None = None
|
||
|
||
# --8<-- [start:responses-extra-params]
|
||
# These are populated when enable_response_messages is set to True
|
||
# NOTE: custom serialization is needed
|
||
# see serialize_input_messages and serialize_output_messages
|
||
input_messages: list[ChatCompletionMessageParam] | None = None
|
||
output_messages: list[ChatCompletionMessageParam] | None = None
|
||
# --8<-- [end:responses-extra-params]
|
||
|
||
# NOTE: openAI harmony doesn't serialize TextContent properly,
|
||
# TODO: this fixes for TextContent, but need to verify for tools etc
|
||
# https://github.com/openai/harmony/issues/78
|
||
@field_serializer("output_messages", when_used="json")
|
||
def serialize_output_messages(self, msgs, _info):
|
||
return serialize_messages(msgs)
|
||
|
||
# NOTE: openAI harmony doesn't serialize TextContent properly, this fixes it
|
||
# https://github.com/openai/harmony/issues/78
|
||
@field_serializer("input_messages", when_used="json")
|
||
def serialize_input_messages(self, msgs, _info):
|
||
return serialize_messages(msgs)
|
||
|
||
@classmethod
|
||
def from_request(
|
||
cls,
|
||
request: ResponsesRequest,
|
||
sampling_params: SamplingParams,
|
||
model_name: str,
|
||
created_time: int,
|
||
output: list[ResponseOutputItem],
|
||
status: ResponseStatus,
|
||
usage: ResponseUsage | None = None,
|
||
input_messages: list[ChatCompletionMessageParam] | None = None,
|
||
output_messages: list[ChatCompletionMessageParam] | None = None,
|
||
) -> "ResponsesResponse":
|
||
incomplete_details: IncompleteDetails | None = None
|
||
if status == "incomplete":
|
||
incomplete_details = IncompleteDetails(reason="max_output_tokens")
|
||
# TODO: implement the other reason for incomplete_details,
|
||
# which is content_filter
|
||
# incomplete_details = IncompleteDetails(reason='content_filter')
|
||
return cls(
|
||
id=request.request_id,
|
||
created_at=created_time,
|
||
incomplete_details=incomplete_details,
|
||
instructions=request.instructions,
|
||
metadata=request.metadata,
|
||
model=model_name,
|
||
output=output,
|
||
input_messages=input_messages,
|
||
output_messages=output_messages,
|
||
parallel_tool_calls=request.parallel_tool_calls,
|
||
temperature=sampling_params.temperature,
|
||
tool_choice=request.tool_choice,
|
||
tools=request.tools,
|
||
top_p=sampling_params.top_p,
|
||
background=request.background,
|
||
max_output_tokens=sampling_params.max_tokens,
|
||
max_tool_calls=request.max_tool_calls,
|
||
previous_response_id=request.previous_response_id,
|
||
prompt=request.prompt,
|
||
reasoning=request.reasoning,
|
||
service_tier=request.service_tier,
|
||
status=status,
|
||
text=request.text,
|
||
top_logprobs=sampling_params.logprobs,
|
||
truncation=request.truncation,
|
||
user=request.user,
|
||
usage=usage,
|
||
)
|
||
|
||
|
||
# TODO: this code can be removed once
|
||
# https://github.com/openai/openai-python/issues/2634 has been resolved
|
||
class ResponseReasoningPartDoneEvent(OpenAIBaseModel):
|
||
content_index: int
|
||
"""The index of the content part that is done."""
|
||
|
||
item_id: str
|
||
"""The ID of the output item that the content part was added to."""
|
||
|
||
output_index: int
|
||
"""The index of the output item that the content part was added to."""
|
||
|
||
part: ResponseReasoningTextContent
|
||
"""The content part that is done."""
|
||
|
||
sequence_number: int
|
||
"""The sequence number of this event."""
|
||
|
||
type: Literal["response.reasoning_part.done"]
|
||
"""The type of the event. Always `response.reasoning_part.done`."""
|
||
|
||
|
||
# TODO: this code can be removed once
|
||
# https://github.com/openai/openai-python/issues/2634 has been resolved
|
||
class ResponseReasoningPartAddedEvent(OpenAIBaseModel):
|
||
content_index: int
|
||
"""The index of the content part that is done."""
|
||
|
||
item_id: str
|
||
"""The ID of the output item that the content part was added to."""
|
||
|
||
output_index: int
|
||
"""The index of the output item that the content part was added to."""
|
||
|
||
part: ResponseReasoningTextContent
|
||
"""The content part that is done."""
|
||
|
||
sequence_number: int
|
||
"""The sequence number of this event."""
|
||
|
||
type: Literal["response.reasoning_part.added"]
|
||
"""The type of the event. Always `response.reasoning_part.added`."""
|
||
|
||
|
||
# vLLM Streaming Events
|
||
# Note: we override the response type with the vLLM ResponsesResponse type
|
||
class ResponseCompletedEvent(OpenAIResponseCompletedEvent):
|
||
response: ResponsesResponse # type: ignore[override]
|
||
|
||
|
||
class ResponseCreatedEvent(OpenAIResponseCreatedEvent):
|
||
response: ResponsesResponse # type: ignore[override]
|
||
|
||
|
||
class ResponseInProgressEvent(OpenAIResponseInProgressEvent):
|
||
response: ResponsesResponse # type: ignore[override]
|
||
|
||
|
||
StreamingResponsesResponse: TypeAlias = (
|
||
ResponseCreatedEvent
|
||
| ResponseInProgressEvent
|
||
| ResponseCompletedEvent
|
||
| ResponseOutputItemAddedEvent
|
||
| ResponseOutputItemDoneEvent
|
||
| ResponseContentPartAddedEvent
|
||
| ResponseContentPartDoneEvent
|
||
| ResponseReasoningTextDeltaEvent
|
||
| ResponseReasoningTextDoneEvent
|
||
| ResponseReasoningPartAddedEvent
|
||
| ResponseReasoningPartDoneEvent
|
||
| ResponseCodeInterpreterCallInProgressEvent
|
||
| ResponseCodeInterpreterCallCodeDeltaEvent
|
||
| ResponseWebSearchCallInProgressEvent
|
||
| ResponseWebSearchCallSearchingEvent
|
||
| ResponseWebSearchCallCompletedEvent
|
||
| ResponseCodeInterpreterCallCodeDoneEvent
|
||
| ResponseCodeInterpreterCallInterpretingEvent
|
||
| ResponseCodeInterpreterCallCompletedEvent
|
||
)
|
||
|
||
BatchRequestInputBody: TypeAlias = (
|
||
ChatCompletionRequest | EmbeddingRequest | ScoreRequest | RerankRequest
|
||
)
|
||
|
||
|
||
class BatchRequestInput(OpenAIBaseModel):
|
||
"""
|
||
The per-line object of the batch input file.
|
||
|
||
NOTE: Currently only the `/v1/chat/completions` endpoint is supported.
|
||
"""
|
||
|
||
# A developer-provided per-request id that will be used to match outputs to
|
||
# inputs. Must be unique for each request in a batch.
|
||
custom_id: str
|
||
|
||
# The HTTP method to be used for the request. Currently only POST is
|
||
# supported.
|
||
method: str
|
||
|
||
# The OpenAI API relative URL to be used for the request. Currently
|
||
# /v1/chat/completions is supported.
|
||
url: str
|
||
|
||
# The parameters of the request.
|
||
body: BatchRequestInputBody
|
||
|
||
@field_validator("body", mode="plain")
|
||
@classmethod
|
||
def check_type_for_url(cls, value: Any, info: ValidationInfo):
|
||
# Use url to disambiguate models
|
||
url: str = info.data["url"]
|
||
if url == "/v1/chat/completions":
|
||
return ChatCompletionRequest.model_validate(value)
|
||
if url == "/v1/embeddings":
|
||
return TypeAdapter(EmbeddingRequest).validate_python(value)
|
||
if url.endswith("/score"):
|
||
return ScoreRequest.model_validate(value)
|
||
if url.endswith("/rerank"):
|
||
return RerankRequest.model_validate(value)
|
||
return TypeAdapter(BatchRequestInputBody).validate_python(value)
|
||
|
||
|
||
class BatchResponseData(OpenAIBaseModel):
|
||
# HTTP status code of the response.
|
||
status_code: int = 200
|
||
|
||
# An unique identifier for the API request.
|
||
request_id: str
|
||
|
||
# The body of the response.
|
||
body: (
|
||
ChatCompletionResponse
|
||
| EmbeddingResponse
|
||
| ScoreResponse
|
||
| RerankResponse
|
||
| None
|
||
) = None
|
||
|
||
|
||
class BatchRequestOutput(OpenAIBaseModel):
|
||
"""
|
||
The per-line object of the batch output and error files
|
||
"""
|
||
|
||
id: str
|
||
|
||
# A developer-provided per-request id that will be used to match outputs to
|
||
# inputs.
|
||
custom_id: str
|
||
|
||
response: BatchResponseData | None
|
||
|
||
# For requests that failed with a non-HTTP error, this will contain more
|
||
# information on the cause of the failure.
|
||
error: Any | None
|
||
|
||
|
||
class TokenizeCompletionRequest(OpenAIBaseModel):
|
||
model: str | None = None
|
||
prompt: str
|
||
|
||
add_special_tokens: bool = Field(
|
||
default=True,
|
||
description=(
|
||
"If true (the default), special tokens (e.g. BOS) will be added to "
|
||
"the prompt."
|
||
),
|
||
)
|
||
return_token_strs: bool | None = Field(
|
||
default=False,
|
||
description=(
|
||
"If true, also return the token strings corresponding to the token ids."
|
||
),
|
||
)
|
||
|
||
|
||
class TokenizeChatRequest(OpenAIBaseModel):
|
||
model: str | None = None
|
||
messages: list[ChatCompletionMessageParam]
|
||
|
||
add_generation_prompt: bool = Field(
|
||
default=True,
|
||
description=(
|
||
"If true, the generation prompt will be added to the chat template. "
|
||
"This is a parameter used by chat template in tokenizer config of the "
|
||
"model."
|
||
),
|
||
)
|
||
return_token_strs: bool | None = Field(
|
||
default=False,
|
||
description=(
|
||
"If true, also return the token strings corresponding to the token ids."
|
||
),
|
||
)
|
||
continue_final_message: bool = Field(
|
||
default=False,
|
||
description=(
|
||
"If this is set, the chat will be formatted so that the final "
|
||
"message in the chat is open-ended, without any EOS tokens. The "
|
||
"model will continue this message rather than starting a new one. "
|
||
'This allows you to "prefill" part of the model\'s response for it. '
|
||
"Cannot be used at the same time as `add_generation_prompt`."
|
||
),
|
||
)
|
||
add_special_tokens: bool = Field(
|
||
default=False,
|
||
description=(
|
||
"If true, special tokens (e.g. BOS) will be added to the prompt "
|
||
"on top of what is added by the chat template. "
|
||
"For most models, the chat template takes care of adding the "
|
||
"special tokens so this should be set to false (as is the "
|
||
"default)."
|
||
),
|
||
)
|
||
chat_template: str | None = Field(
|
||
default=None,
|
||
description=(
|
||
"A Jinja template to use for this conversion. "
|
||
"As of transformers v4.44, default chat template is no longer "
|
||
"allowed, so you must provide a chat template if the tokenizer "
|
||
"does not define one."
|
||
),
|
||
)
|
||
chat_template_kwargs: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description=(
|
||
"Additional keyword args to pass to the template renderer. "
|
||
"Will be accessible by the chat template."
|
||
),
|
||
)
|
||
mm_processor_kwargs: dict[str, Any] | None = Field(
|
||
default=None,
|
||
description=("Additional kwargs to pass to the HF processor."),
|
||
)
|
||
tools: list[ChatCompletionToolsParam] | None = Field(
|
||
default=None,
|
||
description=("A list of tools the model may call."),
|
||
)
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def check_generation_prompt(cls, data):
|
||
if data.get("continue_final_message") and data.get("add_generation_prompt"):
|
||
raise ValueError(
|
||
"Cannot set both `continue_final_message` and "
|
||
"`add_generation_prompt` to True."
|
||
)
|
||
return data
|
||
|
||
|
||
TokenizeRequest: TypeAlias = TokenizeCompletionRequest | TokenizeChatRequest
|
||
|
||
|
||
class TokenizeResponse(OpenAIBaseModel):
|
||
count: int
|
||
max_model_len: int
|
||
tokens: list[int]
|
||
token_strs: list[str] | None = None
|
||
|
||
|
||
class DetokenizeRequest(OpenAIBaseModel):
|
||
model: str | None = None
|
||
tokens: list[int]
|
||
|
||
|
||
class DetokenizeResponse(OpenAIBaseModel):
|
||
prompt: str
|
||
|
||
|
||
class TokenizerInfoResponse(OpenAIBaseModel):
|
||
"""
|
||
Response containing tokenizer configuration
|
||
equivalent to tokenizer_config.json
|
||
"""
|
||
|
||
model_config = ConfigDict(extra="allow")
|
||
tokenizer_class: str
|
||
|
||
|
||
class LoadLoRAAdapterRequest(BaseModel):
|
||
lora_name: str
|
||
lora_path: str
|
||
|
||
|
||
class UnloadLoRAAdapterRequest(BaseModel):
|
||
lora_name: str
|
||
lora_int_id: int | None = Field(default=None)
|
||
|
||
|
||
## Protocols for Audio
|
||
AudioResponseFormat: TypeAlias = Literal["json", "text", "srt", "verbose_json", "vtt"]
|
||
|
||
|
||
class TranscriptionRequest(OpenAIBaseModel):
|
||
# Ordered by official OpenAI API documentation
|
||
# https://platform.openai.com/docs/api-reference/audio/createTranscription
|
||
|
||
file: UploadFile
|
||
"""
|
||
The audio file object (not file name) to transcribe, in one of these
|
||
formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
|
||
"""
|
||
|
||
model: str | None = None
|
||
"""ID of the model to use.
|
||
"""
|
||
|
||
language: str | None = None
|
||
"""The language of the input audio.
|
||
|
||
Supplying the input language in
|
||
[ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format
|
||
will improve accuracy and latency.
|
||
"""
|
||
|
||
prompt: str = Field(default="")
|
||
"""An optional text to guide the model's style or continue a previous audio
|
||
segment.
|
||
|
||
The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting)
|
||
should match the audio language.
|
||
"""
|
||
|
||
response_format: AudioResponseFormat = Field(default="json")
|
||
"""
|
||
The format of the output, in one of these options: `json`, `text`, `srt`,
|
||
`verbose_json`, or `vtt`.
|
||
"""
|
||
|
||
## TODO (varun) : Support if set to 0, certain thresholds are met !!
|
||
|
||
timestamp_granularities: list[Literal["word", "segment"]] = Field(
|
||
alias="timestamp_granularities[]", default=[]
|
||
)
|
||
"""The timestamp granularities to populate for this transcription.
|
||
|
||
`response_format` must be set `verbose_json` to use timestamp granularities.
|
||
Either or both of these options are supported: `word`, or `segment`. Note:
|
||
There is no additional latency for segment timestamps, but generating word
|
||
timestamps incurs additional latency.
|
||
"""
|
||
|
||
stream: bool | None = False
|
||
"""When set, it will enable output to be streamed in a similar fashion
|
||
as the Chat Completion endpoint.
|
||
"""
|
||
# --8<-- [start:transcription-extra-params]
|
||
# Flattened stream option to simplify form data.
|
||
stream_include_usage: bool | None = False
|
||
stream_continuous_usage_stats: bool | None = False
|
||
|
||
vllm_xargs: dict[str, str | int | float] | None = Field(
|
||
default=None,
|
||
description=(
|
||
"Additional request parameters with string or "
|
||
"numeric values, used by custom extensions."
|
||
),
|
||
)
|
||
# --8<-- [end:transcription-extra-params]
|
||
|
||
to_language: str | None = None
|
||
"""The language of the output audio we transcribe to.
|
||
|
||
Please note that this is not currently used by supported models at this
|
||
time, but it is a placeholder for future use, matching translation api.
|
||
"""
|
||
|
||
# --8<-- [start:transcription-sampling-params]
|
||
temperature: float = Field(default=0.0)
|
||
"""The sampling temperature, between 0 and 1.
|
||
|
||
Higher values like 0.8 will make the output more random, while lower values
|
||
like 0.2 will make it more focused / deterministic. If set to 0, the model
|
||
will use [log probability](https://en.wikipedia.org/wiki/Log_probability)
|
||
to automatically increase the temperature until certain thresholds are hit.
|
||
"""
|
||
|
||
top_p: float | None = None
|
||
"""Enables nucleus (top-p) sampling, where tokens are selected from the
|
||
smallest possible set whose cumulative probability exceeds `p`.
|
||
"""
|
||
|
||
top_k: int | None = None
|
||
"""Limits sampling to the `k` most probable tokens at each step."""
|
||
|
||
min_p: float | None = None
|
||
"""Filters out tokens with a probability lower than `min_p`, ensuring a
|
||
minimum likelihood threshold during sampling.
|
||
"""
|
||
|
||
seed: int | None = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
|
||
"""The seed to use for sampling."""
|
||
|
||
frequency_penalty: float | None = 0.0
|
||
"""The frequency penalty to use for sampling."""
|
||
|
||
repetition_penalty: float | None = None
|
||
"""The repetition penalty to use for sampling."""
|
||
|
||
presence_penalty: float | None = 0.0
|
||
"""The presence penalty to use for sampling."""
|
||
# --8<-- [end:transcription-sampling-params]
|
||
|
||
# Default sampling parameters for transcription requests.
|
||
_DEFAULT_SAMPLING_PARAMS: dict = {
|
||
"repetition_penalty": 1.0,
|
||
"temperature": 1.0,
|
||
"top_p": 1.0,
|
||
"top_k": 0,
|
||
"min_p": 0.0,
|
||
}
|
||
|
||
def to_sampling_params(
|
||
self, default_max_tokens: int, default_sampling_params: dict | None = None
|
||
) -> SamplingParams:
|
||
max_tokens = default_max_tokens
|
||
|
||
if default_sampling_params is None:
|
||
default_sampling_params = {}
|
||
|
||
# Default parameters
|
||
if (temperature := self.temperature) is None:
|
||
temperature = default_sampling_params.get(
|
||
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"]
|
||
)
|
||
if (top_p := self.top_p) is None:
|
||
top_p = default_sampling_params.get(
|
||
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"]
|
||
)
|
||
if (top_k := self.top_k) is None:
|
||
top_k = default_sampling_params.get(
|
||
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"]
|
||
)
|
||
if (min_p := self.min_p) is None:
|
||
min_p = default_sampling_params.get(
|
||
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"]
|
||
)
|
||
|
||
if (repetition_penalty := self.repetition_penalty) is None:
|
||
repetition_penalty = default_sampling_params.get(
|
||
"repetition_penalty",
|
||
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
|
||
)
|
||
|
||
return SamplingParams.from_optional(
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
seed=self.seed,
|
||
top_p=top_p,
|
||
top_k=top_k,
|
||
min_p=min_p,
|
||
frequency_penalty=self.frequency_penalty,
|
||
repetition_penalty=repetition_penalty,
|
||
presence_penalty=self.presence_penalty,
|
||
output_kind=RequestOutputKind.DELTA
|
||
if self.stream
|
||
else RequestOutputKind.FINAL_ONLY,
|
||
extra_args=self.vllm_xargs,
|
||
)
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def validate_transcription_request(cls, data):
|
||
if isinstance(data.get("file"), str):
|
||
raise HTTPException(
|
||
status_code=HTTPStatus.UNPROCESSABLE_ENTITY,
|
||
detail="Expected 'file' to be a file-like object, not 'str'.",
|
||
)
|
||
|
||
stream_opts = ["stream_include_usage", "stream_continuous_usage_stats"]
|
||
stream = data.get("stream", False)
|
||
if any(bool(data.get(so, False)) for so in stream_opts) and not stream:
|
||
raise ValueError("Stream options can only be defined when `stream=True`.")
|
||
|
||
return data
|
||
|
||
|
||
# Transcription response objects
|
||
class TranscriptionUsageAudio(OpenAIBaseModel):
|
||
type: Literal["duration"] = "duration"
|
||
seconds: int
|
||
|
||
|
||
class TranscriptionResponse(OpenAIBaseModel):
|
||
text: str
|
||
"""The transcribed text."""
|
||
usage: TranscriptionUsageAudio
|
||
|
||
|
||
class TranscriptionWord(OpenAIBaseModel):
|
||
end: float
|
||
"""End time of the word in seconds."""
|
||
|
||
start: float
|
||
"""Start time of the word in seconds."""
|
||
|
||
word: str
|
||
"""The text content of the word."""
|
||
|
||
|
||
class TranscriptionSegment(OpenAIBaseModel):
|
||
id: int
|
||
"""Unique identifier of the segment."""
|
||
|
||
avg_logprob: float
|
||
"""Average logprob of the segment.
|
||
|
||
If the value is lower than -1, consider the logprobs failed.
|
||
"""
|
||
|
||
compression_ratio: float
|
||
"""Compression ratio of the segment.
|
||
|
||
If the value is greater than 2.4, consider the compression failed.
|
||
"""
|
||
|
||
end: float
|
||
"""End time of the segment in seconds."""
|
||
|
||
no_speech_prob: float
|
||
"""Probability of no speech in the segment.
|
||
|
||
If the value is higher than 1.0 and the `avg_logprob` is below -1, consider
|
||
this segment silent.
|
||
"""
|
||
|
||
seek: int
|
||
"""Seek offset of the segment."""
|
||
|
||
start: float
|
||
"""Start time of the segment in seconds."""
|
||
|
||
temperature: float
|
||
"""Temperature parameter used for generating the segment."""
|
||
|
||
text: str
|
||
"""Text content of the segment."""
|
||
|
||
tokens: list[int]
|
||
"""Array of token IDs for the text content."""
|
||
|
||
|
||
class TranscriptionResponseVerbose(OpenAIBaseModel):
|
||
duration: str
|
||
"""The duration of the input audio."""
|
||
|
||
language: str
|
||
"""The language of the input audio."""
|
||
|
||
text: str
|
||
"""The transcribed text."""
|
||
|
||
segments: list[TranscriptionSegment] | None = None
|
||
"""Segments of the transcribed text and their corresponding details."""
|
||
|
||
words: list[TranscriptionWord] | None = None
|
||
"""Extracted words and their corresponding timestamps."""
|
||
|
||
|
||
class TranslationResponseStreamChoice(OpenAIBaseModel):
|
||
delta: DeltaMessage
|
||
finish_reason: str | None = None
|
||
stop_reason: int | str | None = None
|
||
|
||
|
||
class TranslationStreamResponse(OpenAIBaseModel):
|
||
id: str = Field(default_factory=lambda: f"trsl-{random_uuid()}")
|
||
object: Literal["translation.chunk"] = "translation.chunk"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
choices: list[TranslationResponseStreamChoice]
|
||
usage: UsageInfo | None = Field(default=None)
|
||
|
||
|
||
class TranslationRequest(OpenAIBaseModel):
|
||
# Ordered by official OpenAI API documentation
|
||
# https://platform.openai.com/docs/api-reference/audio/createTranslation
|
||
|
||
file: UploadFile
|
||
"""
|
||
The audio file object (not file name) to translate, in one of these
|
||
formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
|
||
"""
|
||
|
||
model: str | None = None
|
||
"""ID of the model to use.
|
||
"""
|
||
|
||
prompt: str = Field(default="")
|
||
"""An optional text to guide the model's style or continue a previous audio
|
||
segment.
|
||
|
||
The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting)
|
||
should match the audio language.
|
||
"""
|
||
|
||
response_format: AudioResponseFormat = Field(default="json")
|
||
"""
|
||
The format of the output, in one of these options: `json`, `text`, `srt`,
|
||
`verbose_json`, or `vtt`.
|
||
"""
|
||
|
||
# TODO support additional sampling parameters
|
||
# --8<-- [start:translation-sampling-params]
|
||
seed: int | None = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
|
||
"""The seed to use for sampling."""
|
||
|
||
temperature: float = Field(default=0.0)
|
||
"""The sampling temperature, between 0 and 1.
|
||
|
||
Higher values like 0.8 will make the output more random, while lower values
|
||
like 0.2 will make it more focused / deterministic. If set to 0, the model
|
||
will use [log probability](https://en.wikipedia.org/wiki/Log_probability)
|
||
to automatically increase the temperature until certain thresholds are hit.
|
||
"""
|
||
# --8<-- [end:translation-sampling-params]
|
||
|
||
# --8<-- [start:translation-extra-params]
|
||
language: str | None = None
|
||
"""The language of the input audio we translate from.
|
||
|
||
Supplying the input language in
|
||
[ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format
|
||
will improve accuracy.
|
||
"""
|
||
|
||
to_language: str | None = None
|
||
"""The language of the input audio we translate to.
|
||
|
||
Please note that this is not supported by all models, refer to the specific
|
||
model documentation for more details.
|
||
For instance, Whisper only supports `to_language=en`.
|
||
"""
|
||
|
||
stream: bool | None = False
|
||
"""Custom field not present in the original OpenAI definition. When set,
|
||
it will enable output to be streamed in a similar fashion as the Chat
|
||
Completion endpoint.
|
||
"""
|
||
# Flattened stream option to simplify form data.
|
||
stream_include_usage: bool | None = False
|
||
stream_continuous_usage_stats: bool | None = False
|
||
# --8<-- [end:translation-extra-params]
|
||
|
||
# Default sampling parameters for translation requests.
|
||
_DEFAULT_SAMPLING_PARAMS: dict = {
|
||
"temperature": 0,
|
||
}
|
||
|
||
def to_sampling_params(
|
||
self, default_max_tokens: int, default_sampling_params: dict | None = None
|
||
) -> SamplingParams:
|
||
max_tokens = default_max_tokens
|
||
|
||
if default_sampling_params is None:
|
||
default_sampling_params = {}
|
||
# Default parameters
|
||
if (temperature := self.temperature) is None:
|
||
temperature = default_sampling_params.get(
|
||
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"]
|
||
)
|
||
|
||
return SamplingParams.from_optional(
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
seed=self.seed,
|
||
output_kind=RequestOutputKind.DELTA
|
||
if self.stream
|
||
else RequestOutputKind.FINAL_ONLY,
|
||
)
|
||
|
||
@model_validator(mode="before")
|
||
@classmethod
|
||
def validate_stream_options(cls, data):
|
||
stream_opts = ["stream_include_usage", "stream_continuous_usage_stats"]
|
||
stream = data.get("stream", False)
|
||
if any(bool(data.get(so, False)) for so in stream_opts) and not stream:
|
||
raise ValueError("Stream options can only be defined when `stream=True`.")
|
||
|
||
return data
|
||
|
||
|
||
# Translation response objects
|
||
class TranslationResponse(OpenAIBaseModel):
|
||
text: str
|
||
"""The translated text."""
|
||
|
||
|
||
class TranslationWord(OpenAIBaseModel):
|
||
end: float
|
||
"""End time of the word in seconds."""
|
||
|
||
start: float
|
||
"""Start time of the word in seconds."""
|
||
|
||
word: str
|
||
"""The text content of the word."""
|
||
|
||
|
||
class TranslationSegment(OpenAIBaseModel):
|
||
id: int
|
||
"""Unique identifier of the segment."""
|
||
|
||
avg_logprob: float
|
||
"""Average logprob of the segment.
|
||
|
||
If the value is lower than -1, consider the logprobs failed.
|
||
"""
|
||
|
||
compression_ratio: float
|
||
"""Compression ratio of the segment.
|
||
|
||
If the value is greater than 2.4, consider the compression failed.
|
||
"""
|
||
|
||
end: float
|
||
"""End time of the segment in seconds."""
|
||
|
||
no_speech_prob: float
|
||
"""Probability of no speech in the segment.
|
||
|
||
If the value is higher than 1.0 and the `avg_logprob` is below -1, consider
|
||
this segment silent.
|
||
"""
|
||
|
||
seek: int
|
||
"""Seek offset of the segment."""
|
||
|
||
start: float
|
||
"""Start time of the segment in seconds."""
|
||
|
||
temperature: float
|
||
"""Temperature parameter used for generating the segment."""
|
||
|
||
text: str
|
||
"""Text content of the segment."""
|
||
|
||
tokens: list[int]
|
||
"""Array of token IDs for the text content."""
|
||
|
||
|
||
class TranslationResponseVerbose(OpenAIBaseModel):
|
||
duration: str
|
||
"""The duration of the input audio."""
|
||
|
||
language: str
|
||
"""The language of the input audio."""
|
||
|
||
text: str
|
||
"""The translated text."""
|
||
|
||
segments: list[TranslationSegment] | None = None
|
||
"""Segments of the translated text and their corresponding details."""
|
||
|
||
words: list[TranslationWord] | None = None
|
||
"""Extracted words and their corresponding timestamps."""
|