Files
vllm/tests/entrypoints/openai/test_token_in_token_out.py
2025-08-30 01:09:55 +08:00

74 lines
2.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import tempfile
import pytest
from vllm.model_executor.model_loader.weight_utils import (
download_weights_from_hf)
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
MODEL_NAME = "Qwen/Qwen3-0.6B"
MODEL_PATH = os.path.join(tempfile.gettempdir(), "qwen3_06b")
@pytest.fixture(scope="module")
def server():
global MODEL_PATH
MODEL_PATH = download_weights_from_hf(
MODEL_NAME,
allow_patterns=["*"],
cache_dir=MODEL_PATH,
ignore_patterns=["tokenizer*", "vocab*", "*.safetensors"])
args = [
"--max-model-len",
"2048",
"--max-num-seqs",
"128",
"--enforce-eager",
"--skip-tokenizer-init",
"--load-format",
"dummy",
]
with RemoteOpenAIServer(MODEL_PATH, args) as remote_server:
yield remote_server
@pytest.mark.asyncio
async def test_token_in_token_out_and_logprobs(server):
"""
Test token-in-token-out and token_ids align with prompt_logprobs
& logprobs when return_tokens_as_token_ids is enabled.
"""
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
text = "Hello, world! How are you today?"
token_ids = tokenizer.encode(text)
async with server.get_async_client() as client:
# Test with both return_token_ids and return_tokens_as_token_ids enabled
completion = await client.completions.create(
model=MODEL_PATH,
prompt=token_ids,
max_tokens=20,
temperature=0,
echo=True,
extra_body={
"return_token_ids": True,
},
)
# Verify all fields are present
assert (completion.choices[0].token_ids is not None
and 0 < len(completion.choices[0].token_ids) <= 20)
assert completion.choices[0].prompt_token_ids is not None
# Decode prompt tokens
if completion.choices[0].prompt_token_ids:
prompt_text = tokenizer.decode(
completion.choices[0].prompt_token_ids)
# The decoded prompt should match or close to original prompt
assert prompt_text == text