Files
vllm/tests/kernels/attention/test_flashinfer_mla_decode.py
Hanjie Qiu dcb28a332b [Kernel] Flashinfer MLA (trtllm-gen) decode kernel integration (#21078)
Signed-off-by: hjjq <hanjieq@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-10 15:31:10 -07:00

124 lines
4.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
import torch.nn.functional as F
from flashinfer.decode import trtllm_batch_decode_with_kv_cache_mla
from torch import Tensor
from vllm.platforms import current_platform
FLASHINFER_WORKSPACE_BUFFER_SIZE = 128 * 1024 * 1024
if not current_platform.has_device_capability(100):
pytest.skip(
reason="FlashInfer MLA Requires compute capability of 10 or above.",
allow_module_level=True)
def ref_mla(
out: Tensor, # (bs, num_heads, v_head_dim)
query: Tensor, # (bs, num_heads, head_dim)
kv_cache: Tensor, # (num_blocks, block_size, head_dim)
scale: float,
block_tables: Tensor, # (bs, max_num_blocks)
seq_lens: Tensor, # (bs,)
):
bs, num_heads, v_head_dim = out.shape
head_dim = query.shape[2]
for i in range(bs):
# gather and flatten KV-cache
kv = kv_cache[
block_tables[i]] # (max_num_blocks, block_size, head_dim)
kv = kv.view(1, -1,
head_dim)[:, :seq_lens[i]] # (1, seq_len, head_dim)
v = kv[:, :, :v_head_dim]
q = query[i].view(num_heads, 1, head_dim)
o = F.scaled_dot_product_attention(q,
kv,
v,
scale=scale,
enable_gqa=True)
out[i] = o.view(num_heads, v_head_dim)
return out
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("bs", [1, 2, 4, 16])
@pytest.mark.parametrize("block_size", [32, 64])
def test_flashinfer_mla_decode(dtype: torch.dtype, bs: int, block_size: int):
torch.set_default_device('cuda')
torch.manual_seed(42)
# Deepseek R1 config
num_heads = 128
kv_lora_rank = 512
qk_nope_head_dim = 128
qk_rope_head_dim = 64
qk_head_dim = kv_lora_rank + qk_rope_head_dim
scale = (qk_nope_head_dim + qk_rope_head_dim)**-0.5
MAX_SEQ_LEN = 1024
seq_lens = [torch.randint(2, MAX_SEQ_LEN, (1, )).item() for _ in range(bs)]
seq_lens[-1] = MAX_SEQ_LEN
max_seq_len = max(seq_lens)
seq_lens_tensor = torch.tensor(seq_lens, dtype=torch.int32)
# Generate block tables with random but unique block IDs
# From https://github.com/flashinfer-ai/flashinfer/pull/1222
blocks_per_seq = (seq_lens_tensor + block_size - 1) // block_size
max_num_blocks_per_seq = max(blocks_per_seq.max().item(), 4)
total_blocks_needed = sum(blocks_per_seq)
# Get random unique IDs for all blocks
all_block_ids = torch.randperm(total_blocks_needed)
block_id = 0
block_tables = torch.zeros(
(bs, max_num_blocks_per_seq),
dtype=torch.int32,
)
# Populate block tables and track block assignments
block_id = 0
for i in range(bs):
num_blocks_needed = blocks_per_seq[i]
block_tables[i, :num_blocks_needed] = all_block_ids[block_id:block_id +
num_blocks_needed]
block_id += num_blocks_needed
kv_cache = torch.randn(block_tables.numel(), block_size,
qk_head_dim).to(dtype)
q = torch.randn(bs, num_heads, qk_head_dim).to(dtype)
out_ref = q.new_zeros(bs, num_heads, kv_lora_rank)
ref_mla(out_ref, q, kv_cache, scale, block_tables, seq_lens_tensor)
workspace_buffer = torch.zeros(
FLASHINFER_WORKSPACE_BUFFER_SIZE,
dtype=torch.uint8,
device=q.device,
)
# Flashinfer MLA expects the query to be of shape
# (bs, q_len_per_request, num_heads, qk_head_dim),
# where q_len_per_request is the MTP query length (=1 without MTP)
q = q.unsqueeze(1)
out_ans = trtllm_batch_decode_with_kv_cache_mla(
query=q,
kv_cache=kv_cache.unsqueeze(1),
workspace_buffer=workspace_buffer,
qk_nope_head_dim=qk_nope_head_dim,
kv_lora_rank=kv_lora_rank,
qk_rope_head_dim=qk_rope_head_dim,
block_tables=block_tables,
seq_lens=seq_lens_tensor,
max_seq_len=max_seq_len,
bmm1_scale=scale,
)
out_ans = out_ans.squeeze(1)
torch.testing.assert_close(out_ans, out_ref, atol=1e-2, rtol=1e-2)