Files
vllm/tests/entrypoints/conftest.py
2025-10-05 07:06:22 -07:00

203 lines
5.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
@pytest.fixture
def sample_prompts():
return [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
@pytest.fixture
def sample_token_ids():
return [
[0],
[0, 1],
[0, 2, 1],
[0, 3, 1, 2],
]
@pytest.fixture
def sample_regex():
return (
r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}"
r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)"
)
@pytest.fixture
def sample_json_schema():
return {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
"skills": {
"type": "array",
"items": {"type": "string", "maxLength": 10},
"minItems": 3,
},
"work_history": {
"type": "array",
"items": {
"type": "object",
"properties": {
"company": {"type": "string"},
"duration": {"type": "number"},
"position": {"type": "string"},
},
"required": ["company", "position"],
},
},
},
"required": ["name", "age", "skills", "work_history"],
}
@pytest.fixture
def sample_complex_json_schema():
return {
"type": "object",
"properties": {
"score": {
"type": "integer",
"minimum": 0,
"maximum": 100, # Numeric range
},
"grade": {
"type": "string",
"pattern": "^[A-D]$", # Regex pattern
},
"email": {
"type": "string",
"pattern": "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$",
},
"tags": {
"type": "array",
"items": {
"type": "string",
"pattern": "^[a-z]{1,10}$", # Combining length and pattern restrictions
},
},
},
"required": ["score", "grade", "email", "tags"],
}
@pytest.fixture
def sample_definition_json_schema():
return {
"$defs": {
"Step": {
"properties": {
"explanation": {"title": "Explanation", "type": "string"},
"output": {"title": "Output", "type": "string"},
},
"required": ["explanation", "output"],
"title": "Step",
"type": "object",
}
},
"properties": {
"steps": {
"items": {"$ref": "#/$defs/Step"},
"title": "Steps",
"type": "array",
},
"final_answer": {"title": "Final Answer", "type": "string"},
},
"required": ["steps", "final_answer"],
"title": "MathReasoning",
"type": "object",
}
@pytest.fixture
def sample_enum_json_schema():
return {
"type": "object",
"properties": {
"status": {
"type": "string",
"enum": ["active", "inactive", "pending"], # Literal values using enum
},
"priority": {
"type": "string",
"enum": ["low", "medium", "high", "critical"],
},
"category": {
"type": "object",
"properties": {
"type": {
"type": "string",
"enum": ["bug", "feature", "improvement"],
},
"severity": {
"type": "integer",
"enum": [1, 2, 3, 4, 5], # Enum can also contain numbers
},
},
"required": ["type", "severity"],
},
"flags": {
"type": "array",
"items": {
"type": "string",
"enum": ["urgent", "blocked", "needs_review", "approved"],
},
},
},
"required": ["status", "priority", "category", "flags"],
}
@pytest.fixture
def sample_structured_outputs_choices():
return [
"Python",
"Java",
"JavaScript",
"C++",
"C#",
"PHP",
"TypeScript",
"Ruby",
"Swift",
"Kotlin",
]
@pytest.fixture
def sample_sql_statements():
return """
start: select_statement
select_statement: "SELECT" column "from" table "where" condition
column: "col_1" | "col_2"
table: "table_1" | "table_2"
condition: column "=" number
number: "1" | "2"
"""
@pytest.fixture(scope="session")
def zephyr_lora_files():
"""Download zephyr LoRA files once per test session."""
from huggingface_hub import snapshot_download
return snapshot_download(repo_id="typeof/zephyr-7b-beta-lora")
@pytest.fixture(scope="session")
def opt125_lora_files() -> str:
"""Download opt-125m LoRA files once per test session."""
from huggingface_hub import snapshot_download
return snapshot_download(repo_id="peft-internal-testing/opt-125m-dummy-lora")