Files
vllm/tests/compile/test_fusion.py
2025-10-05 07:06:22 -07:00

157 lines
5.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
import vllm.plugins
from vllm.compilation.fusion import (
FUSED_OPS,
QUANT_OPS,
FusedRMSQuantKey,
RMSNormQuantFusionPass,
)
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.config import CompilationConfig, CompilationLevel, PassConfig, VllmConfig
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape,
QuantKey,
ScaleDesc,
)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
Fp8LinearOp,
cutlass_fp8_supported,
maybe_create_device_identity,
)
from vllm.platforms import current_platform
from ..utils import override_cutlass_fp8_supported
from .backend import TestBackend
FP8_DTYPE = current_platform.fp8_dtype()
class TestModel(torch.nn.Module):
def __init__(
self,
hidden_size: int,
eps: float,
static: bool,
cuda_force_torch: bool,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.cuda_force_torch = cuda_force_torch
self.norm = [RMSNorm(hidden_size, eps) for _ in range(3)]
self.wscale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
group_shape = GroupShape.PER_TENSOR if static else GroupShape.PER_TOKEN
quant_scale = ScaleDesc(torch.float32, static, group_shape)
self.key = QuantKey(dtype=FP8_DTYPE, scale=quant_scale, symmetric=True)
if static:
self.scale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
else:
self.scale = [None for _ in range(2)]
self.w = [
torch.rand(hidden_size, hidden_size).to(dtype=FP8_DTYPE).t()
for _ in range(2)
]
with override_cutlass_fp8_supported(not cuda_force_torch):
self.fp8_linear = Fp8LinearOp(
act_quant_static=static,
act_quant_group_shape=group_shape,
)
def forward(self, x):
resid = torch.sqrt(x)
y = self.norm[0](x)
x2 = self.fp8_linear.apply(
y, self.w[0], self.wscale[0], input_scale=self.scale[0]
)
# make sure resid is used for replacement to work
y2, resid = self.norm[1](x2, resid)
x3 = self.fp8_linear.apply(
y2, self.w[1], self.wscale[1], input_scale=self.scale[1]
)
y3, resid = self.norm[2](x3, resid) # use resid here
return y3
def ops_in_model_before(self):
return [QUANT_OPS[self.key]]
def ops_in_model_after(self):
return [
FUSED_OPS[FusedRMSQuantKey(self.key, False)],
FUSED_OPS[FusedRMSQuantKey(self.key, True)],
]
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("hidden_size", [64])
@pytest.mark.parametrize("num_tokens", [257])
@pytest.mark.parametrize("eps", [1e-5, 1e-6])
@pytest.mark.parametrize("static", [True, False])
# cuda_force_torch used to test torch code path on platforms that
# cutlass_fp8_supported() == True.
@pytest.mark.parametrize(
"cuda_force_torch", [True, False] if cutlass_fp8_supported() else [True]
)
@pytest.mark.skipif(
not current_platform.is_cuda_alike(), reason="Only test on CUDA and ROCm"
)
def test_fusion_rmsnorm_quant(
dtype, hidden_size, num_tokens, eps, static, cuda_force_torch
):
torch.set_default_device("cuda")
torch.set_default_dtype(dtype)
torch.manual_seed(1)
maybe_create_device_identity() # needed for certain non-cutlass fp8 paths
vllm_config = VllmConfig(
compilation_config=CompilationConfig(
level=CompilationLevel.PIECEWISE,
custom_ops=["+rms_norm", "+quant_fp8"],
pass_config=PassConfig(enable_fusion=True, enable_noop=True),
)
)
with vllm.config.set_current_vllm_config(vllm_config):
# Reshape pass is needed for the fusion pass to work
noop_pass = NoOpEliminationPass(vllm_config)
fusion_pass = RMSNormQuantFusionPass(vllm_config)
cleanup_pass = PostCleanupPass(vllm_config)
backend = TestBackend(noop_pass, fusion_pass, cleanup_pass)
model = TestModel(hidden_size, eps, static, cuda_force_torch)
# First dimension dynamic
x = torch.rand(num_tokens, hidden_size)
torch._dynamo.mark_dynamic(x, 0)
result = model(x)
model2 = torch.compile(model, backend=backend)
result2 = model2(x)
# Higher tol for dynamic, even higher for bfloat16
if static:
ATOL, RTOL = (1e-3, 1e-3)
elif dtype == torch.float16:
ATOL, RTOL = (2e-3, 2e-3)
else:
ATOL, RTOL = (1e-2, 1e-2)
torch.testing.assert_close(result, result2, atol=ATOL, rtol=RTOL)
assert fusion_pass.matched_count == 2
# In pre-nodes, fp8 quant should be there and fused kernels should not
backend.check_before_ops(model.ops_in_model_before())
# In post-nodes, fused kernels should be there and fp8 quant should not
backend.check_after_ops(model.ops_in_model_after())