mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
1081 lines
39 KiB
Python
1081 lines
39 KiB
Python
# Adapted from
|
|
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
|
|
# Copyright (c) Alibaba Cloud.
|
|
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
|
|
"""Inference-only QWen model compatible with HuggingFace weights."""
|
|
|
|
import math
|
|
import re
|
|
from functools import partial
|
|
from typing import (Any, Callable, Dict, Iterable, List, Literal, Mapping,
|
|
Optional, Tuple, TypedDict, Union)
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from torch import nn
|
|
from torchvision import transforms
|
|
from torchvision.transforms import InterpolationMode
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, LoRAConfig, MultiModalConfig
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData,
|
|
InputContext, token_inputs)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.activation import SiluAndMul, get_act_fn
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.resampler import Resampler2, get_abs_pos
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.base import MultiModalInputs
|
|
from vllm.multimodal.utils import cached_get_tokenizer
|
|
from vllm.sequence import IntermediateTensors, SequenceData
|
|
from vllm.utils import is_list_of
|
|
|
|
from .interfaces import SupportsLoRA, SupportsMultiModal, SupportsPP
|
|
from .utils import (flatten_bn, is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, make_layers)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# NOTE: Qwen models have a few other special tags, e.g., ref, bbox, quad;
|
|
# for the time being, these tags are not considered as special at encoding
|
|
# time. This may change as VLLMs multimodal API changes in the future.
|
|
IMG_START = "<img>"
|
|
IMG_END = "</img>"
|
|
IMG_PAD = "<imgpad>"
|
|
# Image context is fixed at 256 for all images
|
|
MAX_QWEN_IMG_TOKENS = 256
|
|
# Image normalization params
|
|
CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
|
CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
|
|
|
|
|
|
class QwenImagePixelInputs(TypedDict):
|
|
type: Literal["pixel_values"]
|
|
data: torch.Tensor
|
|
"""
|
|
Shape: `(batch_size * num_images, 3, image_size, image_size)`
|
|
|
|
Note that image_size is the value in the vision config to which we resize
|
|
the image to in the normalization transform. Currently multi-image support
|
|
can only be leveraged by passing image embeddings directly.
|
|
"""
|
|
|
|
|
|
class QwenImageEmbeddingInputs(TypedDict):
|
|
type: Literal["image_embeds"]
|
|
data: torch.Tensor
|
|
"""Shape: `(batch_size * num_images, 256, hidden_size)`
|
|
|
|
`hidden_size` must match the hidden size of the language model backbone
|
|
and is stored in the visual config of the model if we have one.
|
|
"""
|
|
|
|
|
|
QwenImageInputs = Union[QwenImagePixelInputs, QwenImageEmbeddingInputs]
|
|
|
|
|
|
class VisualAttention(nn.Module):
|
|
"""self-attention layer class.
|
|
Self-attention layer takes input with size [s, b, h]
|
|
and returns output of the same size.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
bias: bool = True,
|
|
kdim: Optional[int] = None,
|
|
vdim: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.kdim = kdim if kdim is not None else embed_dim
|
|
self.vdim = vdim if vdim is not None else embed_dim
|
|
self._qkv_same_embed_dim = self.kdim == embed_dim \
|
|
and self.vdim == embed_dim
|
|
|
|
self.num_heads = num_heads
|
|
|
|
# Per attention head and per partition values.
|
|
assert embed_dim % num_heads == 0
|
|
self.hidden_size_per_attention_head = embed_dim // num_heads
|
|
self.num_attention_heads_per_partition = num_heads
|
|
self.hidden_size_per_partition = embed_dim
|
|
|
|
# Strided linear layer.
|
|
assert self._qkv_same_embed_dim, \
|
|
'Visual Attention implementation only supports self-attention'
|
|
self.in_proj = ReplicatedLinear(embed_dim, 3 * embed_dim)
|
|
self.out_proj = ReplicatedLinear(embed_dim, embed_dim)
|
|
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
# query/key/value: [sq, b, h]
|
|
sq, b, _ = x.size()
|
|
mixed_x_layer, _ = self.in_proj(x)
|
|
|
|
# [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
|
|
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
|
(self.num_attention_heads_per_partition,
|
|
3 * self.hidden_size_per_attention_head)
|
|
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
|
|
|
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
|
query_layer, key_layer, value_layer = mixed_x_layer.split(
|
|
self.hidden_size_per_attention_head, dim=-1)
|
|
|
|
# [sq, b, np, hn] -> [sq, b * np, hn]
|
|
query_layer = query_layer.view(
|
|
sq, b * self.num_attention_heads_per_partition,
|
|
self.hidden_size_per_attention_head).transpose(0, 1)
|
|
# [sk, b, np, hn] -> [sk, b * np, hn]
|
|
key_layer = key_layer.view(
|
|
sq, b * self.num_attention_heads_per_partition,
|
|
self.hidden_size_per_attention_head).transpose(0, 1)
|
|
|
|
q_scaled = query_layer / self.norm_factor
|
|
if attn_mask is not None:
|
|
attention_probs = torch.baddbmm(attn_mask, q_scaled,
|
|
key_layer.transpose(-2, -1))
|
|
else:
|
|
attention_probs = torch.bmm(q_scaled, key_layer.transpose(-2, -1))
|
|
attention_probs = attention_probs.softmax(dim=-1)
|
|
|
|
value_layer = value_layer.view(
|
|
sq, b * self.num_attention_heads_per_partition,
|
|
self.hidden_size_per_attention_head).transpose(0, 1)
|
|
|
|
# matmul: [b * np, sq, hn]
|
|
context_layer = torch.bmm(attention_probs, value_layer)
|
|
|
|
# change view [b, np, sq, hn]
|
|
context_layer = context_layer.view(
|
|
b, self.num_attention_heads_per_partition, sq,
|
|
self.hidden_size_per_attention_head)
|
|
|
|
# [b, np, sq, hn] --> [sq, b, np, hn]
|
|
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
|
|
|
# [sq, b, np, hn] --> [sq, b, hp]
|
|
new_context_layer_shape = context_layer.size()[:-2] + \
|
|
(self.hidden_size_per_partition,)
|
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
|
|
output, _ = self.out_proj(context_layer)
|
|
|
|
return output
|
|
|
|
|
|
class QwenVMLP(nn.Module):
|
|
"""MLP for the visual component of the Qwen model."""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.c_fc = ColumnParallelLinear(hidden_size,
|
|
intermediate_size,
|
|
bias=True,
|
|
quant_config=quant_config)
|
|
self.act_fn = get_act_fn("gelu")
|
|
self.c_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
def forward(self, x):
|
|
x, _ = self.c_fc(x)
|
|
x = self.act_fn(x)
|
|
x, _ = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class VisualAttentionBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
n_head: int,
|
|
mlp_ratio: float = 4.0,
|
|
norm_layer: Callable = nn.LayerNorm,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.ln_1 = norm_layer(d_model)
|
|
self.ln_2 = norm_layer(d_model)
|
|
mlp_width = int(d_model * mlp_ratio)
|
|
self.attn = VisualAttention(d_model, n_head)
|
|
self.mlp = QwenVMLP(
|
|
hidden_size=d_model,
|
|
intermediate_size=mlp_width,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
def attention(
|
|
self,
|
|
x: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
|
|
return self.attn(x, attn_mask=attn_mask)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
norm_layer: Callable = nn.LayerNorm,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.width = width
|
|
self.layers = layers
|
|
|
|
self.resblocks = nn.ModuleList([
|
|
VisualAttentionBlock(width,
|
|
heads,
|
|
mlp_ratio,
|
|
norm_layer=norm_layer,
|
|
quant_config=quant_config)
|
|
for _ in range(layers)
|
|
])
|
|
|
|
def get_cast_dtype(self) -> torch.dtype:
|
|
return self.resblocks[0].mlp.c_fc.weight.dtype
|
|
|
|
def get_cast_device(self) -> torch.device:
|
|
return self.resblocks[0].mlp.c_fc.weight.device
|
|
|
|
def forward(self,
|
|
x: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
for r in self.resblocks:
|
|
x = r(x, attn_mask=attn_mask)
|
|
return x
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
|
|
def __init__(self,
|
|
image_size: int,
|
|
patch_size: int,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
mlp_ratio: float,
|
|
n_queries: int = 256,
|
|
output_dim: int = 512,
|
|
image_start_id: int = 151857,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
**kwargs):
|
|
super().__init__()
|
|
image_height, image_width = self.image_size = (image_size, image_size)
|
|
patch_height, patch_width = self.patch_size = (patch_size, patch_size)
|
|
self.grid_size = (image_height // patch_height,
|
|
image_width // patch_width)
|
|
self.output_dim = output_dim
|
|
self.conv1 = nn.Conv2d(in_channels=3,
|
|
out_channels=width,
|
|
kernel_size=patch_size,
|
|
stride=patch_size,
|
|
bias=False)
|
|
|
|
# class embeddings and positional embeddings
|
|
scale = width**-0.5
|
|
self.positional_embedding = nn.Parameter(scale *
|
|
torch.randn(256, width))
|
|
|
|
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
|
|
|
self.ln_pre = norm_layer(width)
|
|
self.transformer = TransformerBlock(width,
|
|
layers,
|
|
heads,
|
|
mlp_ratio,
|
|
norm_layer=norm_layer,
|
|
quant_config=quant_config)
|
|
|
|
self.attn_pool = Resampler2(
|
|
grid_size=int(math.sqrt(n_queries)),
|
|
embed_dim=output_dim,
|
|
num_heads=output_dim // 128,
|
|
kv_dim=width,
|
|
norm_layer=norm_layer,
|
|
adaptive=False,
|
|
do_post_projection=False,
|
|
).to(
|
|
device=self.positional_embedding.device,
|
|
dtype=self.positional_embedding.dtype,
|
|
)
|
|
|
|
self.ln_post = norm_layer(output_dim)
|
|
self.proj = nn.Parameter(
|
|
(output_dim**-0.5) * torch.randn(output_dim, output_dim))
|
|
self.image_start_id = image_start_id
|
|
self.image_end_id = image_start_id + 1
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = x.to(
|
|
dtype=self.transformer.get_cast_dtype(),
|
|
device=self.transformer.get_cast_device(),
|
|
)
|
|
|
|
# to patches
|
|
x = self.conv1(x) # shape = [*, width, grid, grid]
|
|
x = x.reshape(x.shape[0], x.shape[1],
|
|
-1) # shape = [*, width, grid ** 2]
|
|
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
|
|
|
x = x + get_abs_pos(self.positional_embedding, int(math.sqrt(
|
|
x.size(1))))
|
|
|
|
x = self.ln_pre(x)
|
|
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
x = self.transformer(x)
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
|
|
x = self.attn_pool(x)
|
|
x = self.ln_post(x)
|
|
x = x @ self.proj
|
|
|
|
return x
|
|
|
|
def get_image_positions(self,
|
|
input_ids: torch.Tensor) -> Optional[torch.Tensor]:
|
|
"""Given the input IDs, extracts start/stop points corresponding to
|
|
images.
|
|
|
|
args:
|
|
Returns:
|
|
Optional torch tensor corresponding to start/stop pairs of images.
|
|
"""
|
|
if torch.any(input_ids == self.image_start_id):
|
|
bos_pos = torch.where(input_ids == self.image_start_id)
|
|
eos_pos = torch.where(input_ids == self.image_end_id)
|
|
return torch.stack((bos_pos[0], eos_pos[0]), dim=1)
|
|
return None
|
|
|
|
|
|
class QWenMLP(nn.Module):
|
|
"""MLP for the language component of the Qwen model, which contains a
|
|
MergedColumnParallelLinear merging 2 outputs via silu activation."""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str = "silu",
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size, [intermediate_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
self.c_proj = RowParallelLinear(intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
if hidden_act != "silu":
|
|
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
|
"Only silu is supported for now.")
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class QWenAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
max_position_embeddings: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: Optional[Dict[str, Any]] = None,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
|
|
)
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = (self.total_num_heads //
|
|
tensor_model_parallel_world_size)
|
|
self.head_dim = hidden_size // self.total_num_heads
|
|
self.c_attn = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
)
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
base=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.c_attn(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
|
output, _ = self.c_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class QWenBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
self.attn = QWenAttention(config.hidden_size,
|
|
config.num_attention_heads,
|
|
config.max_position_embeddings,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config)
|
|
|
|
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
self.mlp = QWenMLP(config.hidden_size,
|
|
config.intermediate_size // 2,
|
|
quant_config=quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
residual: Optional[torch.Tensor],
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.ln_1(hidden_states, residual)
|
|
hidden_states = self.attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.ln_2(hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class QWenModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.wte = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.start_layer, self.end_layer, self.h = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: QWenBlock(config, cache_config, quant_config),
|
|
prefix=f"{prefix}.h")
|
|
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size))
|
|
self.visual = VisionTransformer(**config.visual,
|
|
quant_config=quant_config) if hasattr(
|
|
config, "visual") else None
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
|
pixel_values: Optional[QwenImageInputs],
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
img_pos = None
|
|
# If pixel / visual embeddings are provided, this is a visual model
|
|
if pixel_values is not None and self.visual is not None:
|
|
if pixel_values["type"] != "image_embeds":
|
|
image_embeds = self.visual(pixel_values["data"])
|
|
else:
|
|
image_embeds = pixel_values["data"]
|
|
|
|
# features should be of shape (# images, 256, hidden_dim)
|
|
img_pos = self.visual.get_image_positions(input_ids)
|
|
if isinstance(
|
|
img_pos,
|
|
np.ndarray) and img_pos.shape[0] != image_embeds.shape[0]:
|
|
raise ValueError(
|
|
f"Number of placeholders: {img_pos.shape[0]} "
|
|
f"does not match number of images {image_embeds.shape[0]}."
|
|
)
|
|
|
|
if get_pp_group().is_first_rank:
|
|
hidden_states = self.wte(input_ids)
|
|
# Merge the image embeddings into the hidden states if actually have
|
|
# visual features and the corresponding image tokens
|
|
if img_pos is not None:
|
|
for idx, (img_bos, img_eos) in enumerate(img_pos):
|
|
hidden_states[img_bos + 1:img_eos] = image_embeds[idx]
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
for i in range(self.start_layer, self.end_layer):
|
|
layer = self.h[i]
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
kv_caches[i - self.start_layer],
|
|
attn_metadata,
|
|
residual,
|
|
)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({
|
|
"hidden_states": hidden_states,
|
|
"residual": residual
|
|
})
|
|
hidden_states, _ = self.ln_f(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
def get_image_text(image_num: int, padding: bool) -> str:
|
|
"""Retrieves a placeholder text that when tokenized, will be expanded with
|
|
image pads.
|
|
|
|
Args:
|
|
image_num: The number of the image that we want a text prompt for.
|
|
Images should be indexed starting at 1.
|
|
padding: Whether or not padding should be manually added.
|
|
|
|
Returns:
|
|
Text placeholder prompt for the image being considered.
|
|
"""
|
|
image_start = f"Picture {image_num}: {IMG_START}"
|
|
image_end = f"{IMG_END}\n"
|
|
if not padding:
|
|
return f"{image_start}{image_end}"
|
|
return f"{image_start}{MAX_QWEN_IMG_TOKENS * IMG_PAD}{image_end}"
|
|
|
|
|
|
def input_processor_for_qwen(ctx: InputContext,
|
|
inputs: DecoderOnlyInputs) -> DecoderOnlyInputs:
|
|
"""Processes the inputs, which may or may not be multimodal.
|
|
Multimodal inputs will only be processed if the model has a "visual"
|
|
component in its model config, otherwise they'll be ignored.
|
|
|
|
Args:
|
|
ctx: Context of the loaded model.
|
|
inputs: LLM inputs which may have a multi_modal_data attribute.
|
|
|
|
Returns:
|
|
If the model is language only or not multimodal inputs were provided,
|
|
returns inputs unmodified. Otherwise, processes the multimodal
|
|
images / image embeddings and adds the fixed-length image placeholders.
|
|
"""
|
|
multi_modal_data = inputs.get("multi_modal_data")
|
|
|
|
# Only process images if we have multimodal data and a visual config
|
|
hf_config = ctx.get_hf_config()
|
|
if (multi_modal_data is None or "image" not in multi_modal_data
|
|
or not hasattr(hf_config, "visual")):
|
|
return inputs
|
|
|
|
prompt = inputs.get("prompt")
|
|
prompt_token_ids = inputs["prompt_token_ids"]
|
|
model_config = ctx.model_config
|
|
tokenizer = cached_get_tokenizer(
|
|
model_config.tokenizer,
|
|
trust_remote_code=model_config.trust_remote_code)
|
|
image_data = multi_modal_data["image"]
|
|
if isinstance(image_data, torch.Tensor):
|
|
num_dims = len(image_data.shape)
|
|
if num_dims < 2 or num_dims > 3:
|
|
raise ValueError(
|
|
f"Expected img embeds to be have 3 dimensions, got {num_dims}")
|
|
num_images = 1 if num_dims == 2 else image_data.shape[0]
|
|
elif isinstance(image_data, Image.Image):
|
|
num_images = 1
|
|
elif is_list_of(image_data, Image.Image):
|
|
num_images = len(image_data)
|
|
else:
|
|
raise TypeError(f"Invalid image type: {type(image_data)}")
|
|
|
|
if prompt is None:
|
|
prompt = tokenizer.decode(prompt_token_ids)
|
|
|
|
# Drops anything between <img>/</img> tags; encoding with the tokenizer
|
|
# will automatically add the image pads for the context.
|
|
new_prompt, num_matched_images = re.subn(
|
|
r"(Picture \d*: <img>).*?(<\/img>\n)",
|
|
r"\1\2",
|
|
prompt,
|
|
)
|
|
|
|
if num_matched_images != num_images:
|
|
logger.warning(
|
|
"Number of matched image placeholders %s doesn't match the number "
|
|
"of expected images %s; check your placeholder formatting.",
|
|
num_matched_images, num_images)
|
|
|
|
new_prompt_token_ids = tokenizer.encode(new_prompt)
|
|
|
|
return token_inputs(prompt=new_prompt,
|
|
prompt_token_ids=new_prompt_token_ids,
|
|
multi_modal_data=multi_modal_data)
|
|
|
|
|
|
def input_mapper_for_qwen(ctx: InputContext, data: object) -> MultiModalInputs:
|
|
"""Maps the input data to its MultiModalInputs (if any).
|
|
|
|
Args:
|
|
ctx: Context of the loaded model.
|
|
data: data potentially containing image/image embeddings to be mapped
|
|
to pixel_values in .forward() for a visual QWenLMHeadModel model.
|
|
|
|
Returns:
|
|
MultiModalInputs containing the stacked normalized images tensor or
|
|
image embeddings.
|
|
"""
|
|
# Early exit if we have provided an image to a language only Qwen model
|
|
hf_config = ctx.get_hf_config()
|
|
if not hasattr(hf_config, "visual"):
|
|
logger.warning(
|
|
"Images were provided but this model has no visual config; "
|
|
"multimodal inputs will not be forwarded to the model.")
|
|
return MultiModalInputs()
|
|
|
|
model_config = ctx.model_config
|
|
tokenizer = cached_get_tokenizer(
|
|
model_config.tokenizer,
|
|
trust_remote_code=model_config.trust_remote_code)
|
|
|
|
image_pair_tok = tokenizer.encode(IMG_START + IMG_END,
|
|
add_special_tokens=False,
|
|
return_tensors="pt").squeeze()
|
|
image_start_id = image_pair_tok[0]
|
|
image_end_id = image_pair_tok[-1]
|
|
if (image_start_id + 1) != image_end_id:
|
|
raise ValueError(
|
|
f"Found image end ID {image_end_id}, but expected {IMG_START} + 1")
|
|
if len(image_pair_tok) != (MAX_QWEN_IMG_TOKENS + 2):
|
|
raise ValueError(
|
|
f"Expected image context length of {MAX_QWEN_IMG_TOKENS}, "
|
|
f"but got {image_pair_tok - 2}")
|
|
|
|
hf_config = ctx.get_hf_config()
|
|
image_size = hf_config.visual["image_size"]
|
|
img_emb_size = hf_config.visual["output_dim"]
|
|
|
|
if isinstance(data, torch.Tensor):
|
|
# It's expected that our values have already been processed
|
|
# by the visual transformer; shape is expected to be:
|
|
# (# images, 256, hidden_size)
|
|
if len(data.shape) == 2:
|
|
# Assume only one image embed was provided; unsqueeze the extra dim
|
|
data = data.unsqueeze(0)
|
|
if len(data.shape) != 3 or data.shape[
|
|
1] != MAX_QWEN_IMG_TOKENS or data.shape[2] != img_emb_size:
|
|
raise ValueError(
|
|
"Expected image embeds to be a tensor of shape"
|
|
f"[# images, {MAX_QWEN_IMG_TOKENS}, {img_emb_size}], but "
|
|
f"received shape [{data.shape}]")
|
|
pixel_values = data
|
|
else:
|
|
transform = build_normalization_transform(image_size)
|
|
if not isinstance(data, (list, tuple)):
|
|
data = [data]
|
|
transformed_images = [transform(datum) for datum in data]
|
|
pixel_values = torch.stack(transformed_images, dim=0)
|
|
return MultiModalInputs({"pixel_values": pixel_values})
|
|
|
|
|
|
def build_normalization_transform(image_size: int) -> transforms.Compose:
|
|
"""Builds a normalization transform which can be applied to one or
|
|
more input images from which we want to extract visual features.
|
|
|
|
Args:
|
|
image_size: size of the image to be processed for visual embeddings.
|
|
|
|
Returns:
|
|
Callable transform for normalizing and resizing one RGB image.
|
|
"""
|
|
return transforms.Compose([
|
|
transforms.Resize((image_size, image_size),
|
|
interpolation=InterpolationMode.BICUBIC),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=CLIP_MEAN, std=CLIP_STD),
|
|
])
|
|
|
|
|
|
def dummy_data_for_qwen(
|
|
ctx: InputContext,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> DummyData:
|
|
"""Build dummy data for warming up Qwen models; this will only contain text
|
|
matching the defaults for VLLM unless the model has a visual config.
|
|
|
|
Args:
|
|
ctx: Context of the loaded model.
|
|
seq_len: Number of tokens in the text sequence.
|
|
mm_counts: multimodal data counts.
|
|
|
|
Returns:
|
|
Tuple containing sequential and multimodal data.
|
|
"""
|
|
hf_config = ctx.get_hf_config()
|
|
|
|
# The presence of a visual config indicates this is a multimodal model.
|
|
# If we don't have it, the model is considered an LLM for warmup purposes.
|
|
if not hasattr(hf_config, "visual"):
|
|
seq_data = SequenceData.from_prompt_token_counts((0, seq_len))
|
|
mm_data = None
|
|
return DummyData(seq_data, mm_data)
|
|
|
|
# We have a visual component - use images to warm up
|
|
num_images = mm_counts["image"]
|
|
model_config = ctx.model_config
|
|
tokenizer = cached_get_tokenizer(
|
|
model_config.tokenizer,
|
|
trust_remote_code=model_config.trust_remote_code)
|
|
|
|
# Build the image prompts with no imgpads; the tokenizer will add img pads
|
|
image_prompt = ''.join(
|
|
[get_image_text(idx, False) for idx in range(1, num_images + 1)])
|
|
toks = tokenizer.encode(image_prompt, add_special_tokens=False)
|
|
|
|
# Make sure we actually get the fixed context size per tok padding
|
|
num_pads = toks.count(tokenizer.encode(IMG_PAD)[0])
|
|
if num_pads != (num_images * MAX_QWEN_IMG_TOKENS):
|
|
raise ValueError(
|
|
f"Tokenized dummy data should encode {MAX_QWEN_IMG_TOKENS} pads"
|
|
f" per image, but got {num_pads} pads for {num_images} image(s)"
|
|
" in total. Are you using a qwen tokenizer?")
|
|
|
|
# Ensure the number of tokens is at minimum the sequence length provided
|
|
if len(toks) < seq_len:
|
|
toks += [0] * (seq_len - len(toks))
|
|
|
|
seq_data = SequenceData.from_seqs(toks)
|
|
|
|
# Build the input images; width/height doesn't actually matter here since
|
|
# the data will get resized and the # of tokens per image is constant
|
|
image = Image.new("RGB", (224, 224), color=0)
|
|
mm_data = {"image": image if num_images == 1 else [image] * num_images}
|
|
return DummyData(seq_data, mm_data)
|
|
|
|
|
|
class QWenBaseModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
multimodal_config: MultiModalConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
lora_config: Optional[LoRAConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
self.quant_config = quant_config
|
|
self.transformer = QWenModel(config, cache_config, quant_config)
|
|
self.lm_head = ParallelLMHead(config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config)
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head.weight = self.transformer.wte.weight
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.sampler = get_sampler()
|
|
self.make_empty_intermediate_tensors = (
|
|
self.transformer.make_empty_intermediate_tensors)
|
|
|
|
def _get_image_input_type(
|
|
self,
|
|
pixel_values: Optional[torch.Tensor]) -> Optional[QwenImageInputs]:
|
|
"""Determines if the provided pixel_values are normalized pixel values
|
|
or image embeddings.
|
|
|
|
Args:
|
|
pixel_values: Optional data to processed into visual embeddings.
|
|
|
|
Returns:
|
|
None of the QwenImageInputs type used to determine whether or not
|
|
the visual transformer needs to process the pixel_values.
|
|
"""
|
|
if pixel_values is not None and self.transformer.visual is not None:
|
|
pixel_values = flatten_bn(pixel_values)
|
|
if len(pixel_values.shape) == 3 and pixel_values.shape[
|
|
1] == MAX_QWEN_IMG_TOKENS and pixel_values.shape[
|
|
2] == self.config.visual["output_dim"]:
|
|
return QwenImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
data=pixel_values,
|
|
)
|
|
else:
|
|
# If we have the wrong shape, assume we still need to process
|
|
return QwenImagePixelInputs(
|
|
type="pixel_values",
|
|
data=pixel_values,
|
|
)
|
|
return None
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
pixel_values: Optional[torch.Tensor] = None
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if intermediate_tensors is not None:
|
|
input_ids = None
|
|
pixel_values = None
|
|
else:
|
|
pixel_values = self._get_image_input_type(pixel_values)
|
|
|
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
|
attn_metadata, intermediate_tensors,
|
|
pixel_values)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("gate_up_proj", "w2", 0),
|
|
("gate_up_proj", "w1", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
|
|
|
|
class QWenLLM(QWenBaseModel):
|
|
packed_modules_mapping = {
|
|
"c_attn": ["c_attn"],
|
|
"gate_up_proj": [
|
|
"w2",
|
|
"w1",
|
|
],
|
|
}
|
|
# LoRA specific attributes
|
|
supported_lora_modules = [
|
|
"c_attn",
|
|
"gate_up_proj",
|
|
"c_proj",
|
|
]
|
|
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
|
|
class QWenVL(QWenBaseModel):
|
|
packed_modules_mapping = {
|
|
"c_attn": ["c_attn"],
|
|
"gate_up_proj": [
|
|
"w2",
|
|
"w1",
|
|
],
|
|
}
|
|
# LoRA specific attributes
|
|
supported_lora_modules = [
|
|
"c_attn",
|
|
"gate_up_proj",
|
|
"c_proj",
|
|
# visual module
|
|
"out_proj",
|
|
"in_proj",
|
|
"c_fc",
|
|
# resampler
|
|
"kv_proj",
|
|
]
|
|
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
def get_mm_mapping(self) -> MultiModelKeys:
|
|
"""
|
|
Get the module prefix in multimodal models
|
|
"""
|
|
return MultiModelKeys.from_string_field(
|
|
language_model="transformer.h",
|
|
connector="transformer.visual.attn_pool",
|
|
tower_model="transformer.visual.transformer")
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_image_input_mapper(input_mapper_for_qwen)
|
|
@MULTIMODAL_REGISTRY.register_max_image_tokens(MAX_QWEN_IMG_TOKENS)
|
|
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_qwen)
|
|
@INPUT_REGISTRY.register_input_processor(input_processor_for_qwen)
|
|
class QWenLMHeadModel(QWenBaseModel, SupportsLoRA):
|
|
"""
|
|
QWenLMHeadModel is not only applicable to LLM but also to VL, which is not
|
|
conducive to the current integration logic of LoRA in vLLM. Therefore, it
|
|
is necessary to separate them.
|
|
"""
|
|
# Ensure that the LoRA support check passes when the class is not
|
|
# initialized, but set all these attributes to empty.
|
|
packed_modules_mapping = {}
|
|
supported_lora_modules = []
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
def __new__(
|
|
cls,
|
|
config: PretrainedConfig,
|
|
multimodal_config: MultiModalConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
lora_config: Optional[LoRAConfig] = None,
|
|
):
|
|
# Initialize VL
|
|
if hasattr(config, "visual"):
|
|
return QWenVL(config, multimodal_config, cache_config,
|
|
quant_config, lora_config)
|
|
# Initialize LLM
|
|
else:
|
|
return QWenLLM(config, multimodal_config, cache_config,
|
|
quant_config, lora_config)
|