Files
vllm/vllm/entrypoints/openai/serving_engine.py

227 lines
8.8 KiB
Python

import asyncio
import json
from dataclasses import dataclass
from http import HTTPStatus
from typing import Dict, List, Optional, Tuple, Union
from pydantic import Field
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
from typing_extensions import Annotated
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
CompletionRequest, ErrorResponse,
LogProbs, ModelCard, ModelList,
ModelPermission)
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import Logprob
from vllm.transformers_utils.tokenizer import get_tokenizer
logger = init_logger(__name__)
@dataclass
class LoRA:
name: str
local_path: str
class OpenAIServing:
def __init__(self,
engine: AsyncLLMEngine,
served_model_names: List[str],
lora_modules=Optional[List[LoRA]]):
self.engine = engine
self.served_model_names = served_model_names
if lora_modules is None:
self.lora_requests = []
else:
self.lora_requests = [
LoRARequest(
lora_name=lora.name,
lora_int_id=i,
lora_local_path=lora.local_path,
) for i, lora in enumerate(lora_modules, start=1)
]
self.max_model_len = 0
# Lazy initialized
self.tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
try:
event_loop = asyncio.get_running_loop()
except RuntimeError:
event_loop = None
if event_loop is not None and event_loop.is_running():
# If the current is instanced by Ray Serve,
# there is already a running event loop
event_loop.create_task(self._post_init())
else:
# When using single vLLM without engine_use_ray
asyncio.run(self._post_init())
async def _post_init(self):
engine_model_config = await self.engine.get_model_config()
self.max_model_len = engine_model_config.max_model_len
# A separate tokenizer to map token IDs to strings.
self.tokenizer = get_tokenizer(
engine_model_config.tokenizer,
tokenizer_mode=engine_model_config.tokenizer_mode,
tokenizer_revision=engine_model_config.tokenizer_revision,
trust_remote_code=engine_model_config.trust_remote_code,
truncation_side="left")
async def show_available_models(self) -> ModelList:
"""Show available models. Right now we only have one model."""
model_cards = [
ModelCard(id=served_model_name,
root=self.served_model_names[0],
permission=[ModelPermission()])
for served_model_name in self.served_model_names
]
lora_cards = [
ModelCard(id=lora.lora_name,
root=self.served_model_names[0],
permission=[ModelPermission()])
for lora in self.lora_requests
]
model_cards.extend(lora_cards)
return ModelList(data=model_cards)
def _create_logprobs(
self,
token_ids: List[int],
top_logprobs: List[Optional[Dict[int, Logprob]]],
num_output_top_logprobs: Optional[int] = None,
initial_text_offset: int = 0,
) -> LogProbs:
"""Create OpenAI-style logprobs."""
logprobs = LogProbs()
last_token_len = 0
if num_output_top_logprobs:
logprobs.top_logprobs = []
for i, token_id in enumerate(token_ids):
step_top_logprobs = top_logprobs[i]
if step_top_logprobs is None:
token = self.tokenizer.decode(token_id)
logprobs.tokens.append(token)
logprobs.token_logprobs.append(None)
assert logprobs.top_logprobs is not None
logprobs.top_logprobs.append(None)
else:
token_logprob = step_top_logprobs[token_id].logprob
token = step_top_logprobs[token_id].decoded_token
logprobs.tokens.append(token)
logprobs.token_logprobs.append(token_logprob)
if num_output_top_logprobs:
assert logprobs.top_logprobs is not None
logprobs.top_logprobs.append({
# Convert float("-inf") to the
# JSON-serializable float that OpenAI uses
p.decoded_token: max(p.logprob, -9999.0)
for i, p in step_top_logprobs.items()
} if step_top_logprobs else None)
if len(logprobs.text_offset) == 0:
logprobs.text_offset.append(initial_text_offset)
else:
logprobs.text_offset.append(logprobs.text_offset[-1] +
last_token_len)
last_token_len = len(token)
return logprobs
def create_error_response(
self,
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
return ErrorResponse(message=message,
type=err_type,
code=status_code.value)
def create_streaming_error_response(
self,
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> str:
json_str = json.dumps({
"error":
self.create_error_response(message=message,
err_type=err_type,
status_code=status_code).model_dump()
})
return json_str
async def _check_model(self, request) -> Optional[ErrorResponse]:
if request.model in self.served_model_names:
return None
if request.model in [lora.lora_name for lora in self.lora_requests]:
return None
return self.create_error_response(
message=f"The model `{request.model}` does not exist.",
err_type="NotFoundError",
status_code=HTTPStatus.NOT_FOUND)
def _maybe_get_lora(self, request) -> Optional[LoRARequest]:
if request.model in self.served_model_names:
return None
for lora in self.lora_requests:
if request.model == lora.lora_name:
return lora
# if _check_model has been called earlier, this will be unreachable
raise ValueError("The model `{request.model}` does not exist.")
def _validate_prompt_and_tokenize(
self,
request: Union[ChatCompletionRequest, CompletionRequest],
prompt: Optional[str] = None,
prompt_ids: Optional[List[int]] = None,
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
) -> Tuple[List[int], str]:
if not (prompt or prompt_ids):
raise ValueError("Either prompt or prompt_ids should be provided.")
if (prompt and prompt_ids):
raise ValueError(
"Only one of prompt or prompt_ids should be provided.")
if prompt_ids is None:
tokenizer_kwargs = {} if truncate_prompt_tokens is None else {
"truncation": True,
"max_length": truncate_prompt_tokens,
}
input_ids = self.tokenizer(prompt, **tokenizer_kwargs).input_ids
elif truncate_prompt_tokens is not None:
input_ids = prompt_ids[-truncate_prompt_tokens:]
else:
input_ids = prompt_ids
input_text = prompt if prompt is not None else self.tokenizer.decode(
prompt_ids)
token_num = len(input_ids)
if request.max_tokens is None:
if token_num >= self.max_model_len:
raise ValueError(
f"This model's maximum context length is "
f"{self.max_model_len} tokens. However, you requested "
f"{token_num} tokens in the messages, "
f"Please reduce the length of the messages.", )
request.max_tokens = self.max_model_len - token_num
if token_num + request.max_tokens > self.max_model_len:
raise ValueError(
f"This model's maximum context length is "
f"{self.max_model_len} tokens. However, you requested "
f"{request.max_tokens + token_num} tokens "
f"({token_num} in the messages, "
f"{request.max_tokens} in the completion). "
f"Please reduce the length of the messages or completion.", )
else:
return input_ids, input_text