Files
vllm/tests/kernels/attention/test_rocm_attention_selector.py
2025-07-19 13:53:17 -07:00

83 lines
3.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from vllm.attention.selector import _cached_get_attn_backend, get_attn_backend
from vllm.platforms.rocm import RocmPlatform
from vllm.utils import STR_BACKEND_ENV_VAR
@pytest.fixture(autouse=True)
def clear_cache():
"""Clear lru cache to ensure each test case runs without caching.
"""
_cached_get_attn_backend.cache_clear()
def test_selector(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_FLASH")
# Set the current platform to ROCm using monkeypatch
monkeypatch.setattr("vllm.attention.selector.current_platform",
RocmPlatform())
# Test standard ROCm attention
backend = get_attn_backend(16, torch.float16, torch.float16, 16, False)
assert (backend.get_name() == "ROCM_FLASH"
or backend.get_name() == "TRITON_ATTN_VLLM_V1")
# MLA test for deepseek related
# change the attention backend to triton MLA
m.setenv(STR_BACKEND_ENV_VAR, "TRITON_MLA")
backend = get_attn_backend(576,
torch.bfloat16,
"auto",
16,
False,
use_mla=True)
assert (backend.get_name() == "TRITON_MLA"
or backend.get_name() == "TRITON_MLA_VLLM_V1")
# If attention backend is None
# If use_mla is true
# The selected backend is triton MLA
m.setenv(STR_BACKEND_ENV_VAR, None)
backend = get_attn_backend(576,
torch.bfloat16,
"auto",
16,
False,
use_mla=True)
assert (backend.get_name() == "TRITON_MLA"
or backend.get_name() == "TRITON_MLA_VLLM_V1")
# change the attention backend to AITER MLA
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_AITER_MLA")
backend = get_attn_backend(576,
torch.bfloat16,
"auto",
1,
False,
use_mla=True)
assert (backend.get_name() == "ROCM_AITER_MLA"
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")
# If attention backend is None
# If use_mla is true
# If VLLM_ROCM_USE_AITER is enabled
# The selected backend is ROCM_AITER_MLA
m.setenv(STR_BACKEND_ENV_VAR, None)
m.setenv("VLLM_ROCM_USE_AITER", "1")
backend = get_attn_backend(576,
torch.bfloat16,
"auto",
1,
False,
use_mla=True)
assert (backend.get_name() == "ROCM_AITER_MLA"
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")