mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Co-authored-by: Chenxi Yang <cxyang@meta.com> Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
1650 lines
62 KiB
Python
1650 lines
62 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/Glm4v/modeling_Glm4v.py
|
|
# Copyright 2025 The vLLM team.
|
|
# Copyright 2025 The ZhipuAI Team.
|
|
# Copyright 2025 The HuggingFace Inc. team.
|
|
# All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only GLM-4V model compatible with HuggingFace weights."""
|
|
|
|
import math
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from functools import partial
|
|
from typing import Annotated, Any, Callable, Literal, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from transformers import BatchFeature
|
|
from transformers.models.glm4v.configuration_glm4v import Glm4vVisionConfig
|
|
from transformers.models.glm4v.image_processing_glm4v import (
|
|
Glm4vImageProcessor, smart_resize)
|
|
from transformers.models.glm4v.video_processing_glm4v import (
|
|
Glm4vVideoProcessor)
|
|
from transformers.video_utils import VideoMetadata
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import (get_tensor_model_parallel_world_size,
|
|
parallel_state)
|
|
from vllm.distributed import utils as dist_utils
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor import SamplingMetadata
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
|
MultiModalKwargsItems, VideoItem)
|
|
from vllm.multimodal.parse import (ImageSize, MultiModalDataItems,
|
|
MultiModalDataParser)
|
|
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
|
BaseProcessingInfo, PromptReplacement,
|
|
PromptUpdate, PromptUpdateDetails)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.multimodal.utils import run_dp_sharded_mrope_vision_model
|
|
from vllm.platforms import _Backend
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.config import uses_mrope
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from ..layers.activation import SiluAndMul
|
|
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
|
|
SupportsMultiModal, SupportsPP)
|
|
from .qwen2_vl import (_create_qwen2vl_field_factory,
|
|
apply_rotary_pos_emb_vision)
|
|
from .utils import (AutoWeightsLoader, WeightsMapper,
|
|
init_vllm_registered_model, maybe_prefix,
|
|
merge_multimodal_embeddings)
|
|
from .vision import get_vit_attn_backend
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# For profile run
|
|
_MAX_FRAMES_PER_VIDEO = 600
|
|
|
|
# === Vision Inputs === #
|
|
|
|
|
|
class Glm4vImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- np: Number of patches
|
|
- cpp: Number of channels * patch_size * patch_size
|
|
- ni: Number of images
|
|
- g: Grid dimensions (3 for grid_t, grid_h, grid_w)
|
|
"""
|
|
type: Literal["pixel_values"] = "pixel_values"
|
|
|
|
pixel_values: Annotated[torch.Tensor, TensorShape("np", "cpp")]
|
|
image_grid_thw: Annotated[torch.Tensor, TensorShape("ni", 3)]
|
|
|
|
|
|
class Glm4vImageEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- f: Number of image features (varies based on image resolution)
|
|
- h: Hidden size (must match language model backbone)
|
|
- n: Number of images
|
|
- g: Grid dimensions (3 for grid_t, grid_h, grid_w)
|
|
"""
|
|
type: Literal["image_embeds"] = "image_embeds"
|
|
|
|
image_embeds: Annotated[torch.Tensor, TensorShape("f", "h")]
|
|
image_grid_thw: Annotated[torch.Tensor, TensorShape("n", 3)]
|
|
|
|
|
|
Glm4vImageInputs = Union[Glm4vImagePixelInputs, Glm4vImageEmbeddingInputs]
|
|
|
|
|
|
class Glm4vVideoPixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- np: Number of patches
|
|
- ctpp: Number of channels * temporal_patch_size *
|
|
patch_size * patch_size
|
|
- f: Number of frames
|
|
- g: Grid dimensions (3 for grid_t which is usually 1 for processed
|
|
video, grid_h, grid_w)
|
|
"""
|
|
type: Literal["pixel_values_videos"] = "pixel_values_videos"
|
|
|
|
pixel_values_videos: Annotated[torch.Tensor, TensorShape("np", "ctpp")]
|
|
video_grid_thw: Annotated[torch.Tensor, TensorShape("f", 3)]
|
|
|
|
|
|
class Glm4vVideoEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- p: Number of video patches across all frames
|
|
- h: Hidden size (must match language model backbone)
|
|
- f: Number of frames
|
|
- g: Grid dimensions (3 for grid_t which is usually 1 for processed
|
|
video, grid_h, grid_w)
|
|
"""
|
|
type: Literal["video_embeds"] = "video_embeds"
|
|
|
|
video_embeds: Annotated[torch.Tensor, TensorShape("p", "h")]
|
|
video_grid_thw: Annotated[torch.Tensor, TensorShape("f", 3)]
|
|
|
|
|
|
Glm4vVideoInputs = Union[Glm4vVideoPixelInputs, Glm4vVideoEmbeddingInputs]
|
|
|
|
# ==== Vision Encoder ==== #
|
|
|
|
|
|
class Glm4vVisionMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
hidden_features: int,
|
|
bias: bool = False,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
input_size=in_features,
|
|
output_sizes=[hidden_features] * 2,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
hidden_features,
|
|
in_features,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.down_proj",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(x)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
def all_gather_interleave(local_tensor, hidden_size: int, tp_size: int):
|
|
"""All-gather the input tensor interleavely across model parallel group."""
|
|
import torch.distributed as dist
|
|
|
|
gathered_tensors = [torch.zeros_like(local_tensor) for _ in range(tp_size)]
|
|
dist.all_gather(
|
|
gathered_tensors,
|
|
local_tensor,
|
|
group=parallel_state.get_tp_group().device_group,
|
|
)
|
|
|
|
gathered_tensors_split = [
|
|
torch.split(tensor, hidden_size // tp_size, -1)
|
|
for tensor in gathered_tensors
|
|
]
|
|
ordered_tensors = [
|
|
tensor for pair in zip(*gathered_tensors_split) for tensor in pair
|
|
]
|
|
result_tensor = torch.cat(ordered_tensors, dim=-1)
|
|
return result_tensor
|
|
|
|
|
|
class Glm4vVisionAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
projection_size: int,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
# Per attention head and per partition values.
|
|
self.tp_size = (1 if use_data_parallel else
|
|
get_tensor_model_parallel_world_size())
|
|
self.tp_rank = (0 if use_data_parallel else
|
|
parallel_state.get_tensor_model_parallel_rank())
|
|
self.hidden_size_per_attention_head = dist_utils.divide(
|
|
projection_size, num_heads)
|
|
self.num_attention_heads_per_partition = dist_utils.divide(
|
|
num_heads, self.tp_size)
|
|
|
|
self.qkv = QKVParallelLinear(
|
|
hidden_size=embed_dim,
|
|
head_size=self.hidden_size_per_attention_head,
|
|
total_num_heads=num_heads,
|
|
total_num_kv_heads=num_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
# Change qkv prefix to align with GLM-4.5V-FP8 quantization cfg
|
|
prefix=f"{prefix}.qkv_proj" if quant_config else f"{prefix}.qkv",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.proj = RowParallelLinear(
|
|
input_size=projection_size,
|
|
output_size=embed_dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.proj",
|
|
bias=False,
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
|
|
# Detect attention implementation.
|
|
self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
|
|
if self.attn_backend not in {
|
|
_Backend.FLASH_ATTN,
|
|
_Backend.TORCH_SDPA,
|
|
_Backend.XFORMERS,
|
|
}:
|
|
raise RuntimeError(
|
|
f"GLM-4V does not support {self.attn_backend} backend now.")
|
|
|
|
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
|
|
# [s, b, 3 * head * head_dim]
|
|
seq_len, bs, _ = qkv.shape
|
|
|
|
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
|
|
q, k, v = qkv.chunk(3, dim=2)
|
|
|
|
# 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
|
|
new_shape = (
|
|
seq_len,
|
|
bs,
|
|
self.num_attention_heads_per_partition,
|
|
self.hidden_size_per_attention_head,
|
|
)
|
|
q, k, v = (x.view(*new_shape) for x in (q, k, v))
|
|
return q, k, v
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cu_seqlens: torch.Tensor,
|
|
rotary_pos_emb: torch.Tensor,
|
|
max_seqlen: Optional[int] = None, # Only used for Flash Attention
|
|
seqlens: Optional[list[int]] = None, # Only used for xFormers
|
|
) -> torch.Tensor:
|
|
# [s, b, c] --> [s, b, head * 3 * head_dim]
|
|
x, _ = self.qkv(x)
|
|
|
|
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
|
|
q, k, v = self.split_qkv(x)
|
|
batch_size = q.shape[1]
|
|
|
|
q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
|
|
for x in (q, k, v))
|
|
if rotary_pos_emb is not None:
|
|
q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
|
|
k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)
|
|
|
|
if self.attn_backend == _Backend.FLASH_ATTN:
|
|
# from vllm_flash_attn.flash_attn_interface import (
|
|
# flash_attn_varlen_func)
|
|
from flash_attn import flash_attn_varlen_func
|
|
|
|
q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
|
|
|
|
output = flash_attn_varlen_func(
|
|
q,
|
|
k,
|
|
v,
|
|
cu_seqlens_q=cu_seqlens,
|
|
cu_seqlens_k=cu_seqlens,
|
|
max_seqlen_q=max_seqlen,
|
|
max_seqlen_k=max_seqlen,
|
|
dropout_p=0,
|
|
causal=False,
|
|
)
|
|
|
|
context_layer = rearrange(output,
|
|
"(b s) ... -> b s ...",
|
|
b=batch_size)
|
|
elif self.attn_backend == _Backend.TORCH_SDPA:
|
|
# Execute attention entry by entry for speed & less VRAM.
|
|
outputs = []
|
|
for i in range(1, len(cu_seqlens)):
|
|
start_idx = cu_seqlens[i - 1]
|
|
end_idx = cu_seqlens[i]
|
|
q_i = q[:, start_idx:end_idx]
|
|
k_i = k[:, start_idx:end_idx]
|
|
v_i = v[:, start_idx:end_idx]
|
|
q_i, k_i, v_i = (rearrange(x, "b s h d -> b h s d")
|
|
for x in [q_i, k_i, v_i])
|
|
output_i = F.scaled_dot_product_attention(q_i,
|
|
k_i,
|
|
v_i,
|
|
dropout_p=0.0)
|
|
output_i = rearrange(output_i, "b h s d -> b s h d ")
|
|
outputs.append(output_i)
|
|
context_layer = torch.cat(outputs, dim=1)
|
|
elif self.attn_backend == _Backend.XFORMERS:
|
|
from xformers import ops as xops
|
|
from xformers.ops.fmha.attn_bias import BlockDiagonalMask
|
|
|
|
attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
|
|
kv_seqlen=None,
|
|
device=q.device)
|
|
|
|
context_layer = xops.memory_efficient_attention_forward(
|
|
q, k, v, attn_bias=attn_bias, p=0, scale=None)
|
|
|
|
context_layer = rearrange(context_layer,
|
|
"b s h d -> s b (h d)").contiguous()
|
|
|
|
output, _ = self.proj(context_layer)
|
|
return output
|
|
|
|
|
|
class Glm4vVisionBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int,
|
|
mlp_hidden_dim: int,
|
|
norm_layer: Optional[Callable[[int], nn.Module]] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
if norm_layer is None:
|
|
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
|
self.norm1 = norm_layer(dim)
|
|
self.norm2 = norm_layer(dim)
|
|
self.attn = Glm4vVisionAttention(
|
|
embed_dim=dim,
|
|
num_heads=num_heads,
|
|
projection_size=dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
self.mlp = Glm4vVisionMLP(
|
|
dim,
|
|
mlp_hidden_dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cu_seqlens: torch.Tensor,
|
|
rotary_pos_emb: torch.Tensor,
|
|
max_seqlen: Optional[int] = None, # Only used for Flash Attention
|
|
seqlens: Optional[list[int]] = None, # Only used for xFormers
|
|
) -> torch.Tensor:
|
|
x = x + self.attn(
|
|
self.norm1(x),
|
|
cu_seqlens=cu_seqlens,
|
|
rotary_pos_emb=rotary_pos_emb,
|
|
max_seqlen=max_seqlen,
|
|
seqlens=seqlens,
|
|
)
|
|
|
|
x = x + self.mlp(self.norm2(x))
|
|
return x
|
|
|
|
|
|
class Glm4vVisionPatchEmbed(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 14,
|
|
temporal_patch_size: int = 1,
|
|
in_channels: int = 3,
|
|
hidden_size: int = 1536,
|
|
) -> None:
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.temporal_patch_size = temporal_patch_size
|
|
self.hidden_size = hidden_size
|
|
|
|
kernel_size = (temporal_patch_size, patch_size, patch_size)
|
|
self.proj = nn.Conv3d(
|
|
in_channels,
|
|
hidden_size,
|
|
kernel_size=kernel_size,
|
|
stride=kernel_size,
|
|
bias=True,
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
L, C = x.shape
|
|
x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
|
|
self.patch_size)
|
|
x = self.proj(x).view(L, self.hidden_size)
|
|
return x
|
|
|
|
|
|
class Glm4vPatchMerger(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
context_dim: int,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
bias: bool = False,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = d_model
|
|
self.proj = ColumnParallelLinear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=bias,
|
|
gather_output=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.proj",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.post_projection_norm = nn.LayerNorm(self.hidden_size)
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
input_size=self.hidden_size,
|
|
output_sizes=[context_dim] * 2,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
context_dim,
|
|
self.hidden_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.down_proj",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
self.extra_activation_func = nn.GELU()
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x, _ = self.proj(x)
|
|
x = self.extra_activation_func(self.post_projection_norm(x))
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class Glm4vVisionEmbeddings(nn.Module):
|
|
|
|
def __init__(self, config: Glm4vVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
self.num_patches = (self.image_size // self.patch_size)**2
|
|
self.num_positions = self.num_patches
|
|
self.position_embedding = nn.Embedding(self.num_positions,
|
|
self.embed_dim)
|
|
self.register_buffer(
|
|
"position_ids",
|
|
torch.arange(self.num_positions).expand((1, -1)),
|
|
persistent=False,
|
|
)
|
|
|
|
def forward(self, embeddings, lengths, image_shapes, h_coords,
|
|
w_coords) -> torch.Tensor:
|
|
pos_embed_weight = self.position_embedding.weight
|
|
hidden_size = pos_embed_weight.shape[1]
|
|
total_seq = h_coords.shape[0]
|
|
device = pos_embed_weight.device
|
|
|
|
# Move coordinates to correct device
|
|
h_coords, w_coords = h_coords.to(device), w_coords.to(device)
|
|
|
|
# Handle empty sequence case
|
|
if total_seq == 0:
|
|
adapted_pos_embed = torch.empty(0,
|
|
hidden_size,
|
|
device=device,
|
|
dtype=pos_embed_weight.dtype)
|
|
else:
|
|
# Convert inputs to tensors if needed
|
|
if isinstance(lengths, list):
|
|
lengths = torch.tensor(lengths,
|
|
device=device,
|
|
dtype=torch.long)
|
|
if not isinstance(image_shapes, torch.Tensor):
|
|
image_shapes = torch.tensor(image_shapes,
|
|
device=device,
|
|
dtype=torch.long)
|
|
|
|
# Prepare 2D position embedding
|
|
orig_size_sq = pos_embed_weight.shape[0]
|
|
orig_size = int(orig_size_sq**0.5)
|
|
pos_embed_2d = (pos_embed_weight.view(
|
|
orig_size, orig_size,
|
|
hidden_size).permute(2, 0,
|
|
1).unsqueeze(0).to(device=device,
|
|
dtype=torch.float32))
|
|
|
|
# Calculate target dimensions for each patch
|
|
# Add bounds checking for data parallel mode
|
|
if len(lengths) > image_shapes.shape[0]:
|
|
# In data parallel mode, some GPUs might not have all
|
|
# image shapes
|
|
# Use available image shapes, cycling if necessary
|
|
target_h_list = []
|
|
target_w_list = []
|
|
for i in range(len(lengths)):
|
|
# Cycle through available shapes
|
|
shape_idx = i % image_shapes.shape[0]
|
|
target_h_list.append(image_shapes[shape_idx,
|
|
1].repeat(lengths[i]))
|
|
target_w_list.append(image_shapes[shape_idx,
|
|
2].repeat(lengths[i]))
|
|
target_h = torch.cat(target_h_list).to(device=device,
|
|
dtype=torch.float32)
|
|
target_w = torch.cat(target_w_list).to(device=device,
|
|
dtype=torch.float32)
|
|
else:
|
|
target_h = torch.cat([
|
|
image_shapes[i, 1].repeat(lengths[i])
|
|
for i in range(len(lengths))
|
|
]).to(device=device, dtype=torch.float32)
|
|
target_w = torch.cat([
|
|
image_shapes[i, 2].repeat(lengths[i])
|
|
for i in range(len(lengths))
|
|
]).to(device=device, dtype=torch.float32)
|
|
|
|
# Normalize coordinates to [-1, 1] range for grid_sample
|
|
h_coords = h_coords.to(device=device, dtype=torch.float32)
|
|
w_coords = w_coords.to(device=device, dtype=torch.float32)
|
|
norm_w = ((w_coords + 0.5) / target_w) * 2 - 1
|
|
norm_h = ((h_coords + 0.5) / target_h) * 2 - 1
|
|
|
|
# Create sampling grid
|
|
grid = (torch.stack((norm_w, norm_h),
|
|
dim=-1).unsqueeze(0).unsqueeze(2))
|
|
|
|
# Perform bicubic interpolation
|
|
interpolated_embed_fp32 = F.grid_sample(
|
|
pos_embed_2d,
|
|
grid,
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
padding_mode="border",
|
|
)
|
|
|
|
# Reshape and convert back to original dtype
|
|
adapted_pos_embed_fp32 = (
|
|
interpolated_embed_fp32.squeeze(0).squeeze(-1).permute(1, 0))
|
|
adapted_pos_embed = adapted_pos_embed_fp32.to(
|
|
pos_embed_weight.dtype).to(embeddings.device)
|
|
|
|
# Add adapted position encoding to embeddings
|
|
embeddings = embeddings + adapted_pos_embed
|
|
return embeddings
|
|
|
|
|
|
class Glm4vVisionRotaryEmbedding(nn.Module):
|
|
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.theta = theta
|
|
inv_freq = 1.0 / (theta
|
|
**(torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
self._seq_len_cached = 0
|
|
self._freqs_cached = None
|
|
|
|
def update_freqs_cache(self, seqlen: int) -> None:
|
|
if seqlen > self._seq_len_cached:
|
|
seqlen *= 2
|
|
self._seq_len_cached = seqlen
|
|
self.inv_freq = 1.0 / (self.theta**(torch.arange(
|
|
0,
|
|
self.dim,
|
|
2,
|
|
dtype=torch.float,
|
|
device=self.inv_freq.device,
|
|
) / self.dim))
|
|
seq = torch.arange(seqlen,
|
|
device=self.inv_freq.device,
|
|
dtype=self.inv_freq.dtype)
|
|
freqs = torch.outer(seq, self.inv_freq)
|
|
self._freqs_cached = freqs
|
|
|
|
def forward(self, seqlen: int) -> torch.Tensor:
|
|
self.update_freqs_cache(seqlen)
|
|
return self._freqs_cached[:seqlen]
|
|
|
|
|
|
class Glm4vVisionTransformer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
vision_config: Glm4vVisionConfig,
|
|
norm_eps: float = 1e-6,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
patch_size = vision_config.patch_size
|
|
temporal_patch_size = vision_config.temporal_patch_size
|
|
in_channels = vision_config.in_channels
|
|
depth = vision_config.depth
|
|
self.hidden_size = vision_config.hidden_size
|
|
self.num_heads = vision_config.num_heads
|
|
self.use_data_parallel = use_data_parallel
|
|
|
|
self.patch_size = vision_config.patch_size
|
|
self.spatial_merge_size = vision_config.spatial_merge_size
|
|
self.out_hidden_size = vision_config.out_hidden_size
|
|
|
|
self.patch_embed = Glm4vVisionPatchEmbed(
|
|
patch_size=patch_size,
|
|
temporal_patch_size=temporal_patch_size,
|
|
in_channels=in_channels,
|
|
hidden_size=self.hidden_size,
|
|
)
|
|
|
|
norm_layer = partial(RMSNorm, eps=norm_eps)
|
|
head_dim = self.hidden_size // self.num_heads
|
|
self.rotary_pos_emb = Glm4vVisionRotaryEmbedding(head_dim // 2)
|
|
self.blocks = nn.ModuleList([
|
|
Glm4vVisionBlock(
|
|
dim=self.hidden_size,
|
|
num_heads=self.num_heads,
|
|
mlp_hidden_dim=vision_config.out_hidden_size,
|
|
norm_layer=norm_layer,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.blocks.{layer_idx}",
|
|
use_data_parallel=self.use_data_parallel,
|
|
) for layer_idx in range(depth)
|
|
])
|
|
self.merger = Glm4vPatchMerger(
|
|
d_model=vision_config.out_hidden_size,
|
|
context_dim=vision_config.intermediate_size,
|
|
quant_config=quant_config,
|
|
bias=False,
|
|
prefix=f"{prefix}.merger",
|
|
use_data_parallel=self.use_data_parallel,
|
|
)
|
|
self.embeddings = Glm4vVisionEmbeddings(vision_config)
|
|
|
|
self.post_conv_layernorm = RMSNorm(vision_config.hidden_size,
|
|
eps=vision_config.rms_norm_eps)
|
|
self.downsample = nn.Conv2d(
|
|
in_channels=vision_config.hidden_size,
|
|
out_channels=vision_config.out_hidden_size,
|
|
kernel_size=vision_config.spatial_merge_size,
|
|
stride=vision_config.spatial_merge_size,
|
|
)
|
|
self.post_layernorm = RMSNorm(vision_config.hidden_size,
|
|
eps=vision_config.rms_norm_eps)
|
|
|
|
self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
|
|
|
|
@property
|
|
def dtype(self) -> torch.dtype:
|
|
return self.patch_embed.proj.weight.dtype
|
|
|
|
@property
|
|
def device(self) -> torch.device:
|
|
return self.patch_embed.proj.weight.device
|
|
|
|
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
|
|
pos_ids = []
|
|
for t, h, w in grid_thw:
|
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
|
hpos_ids = (hpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
).permute(0, 2, 1, 3).flatten())
|
|
wpos_ids = (wpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
).permute(0, 2, 1, 3).flatten())
|
|
pos_ids.append(
|
|
torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
|
pos_ids = torch.cat(pos_ids, dim=0)
|
|
max_grid_size = grid_thw[:, 1:].max()
|
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
|
return rotary_pos_emb, pos_ids
|
|
|
|
def compute_attn_mask_seqlen(
|
|
self,
|
|
cu_seqlens: torch.Tensor,
|
|
) -> tuple[Optional[int], Optional[list[int]]]:
|
|
max_seqlen, seqlens = None, None
|
|
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
|
|
if self.attn_backend == _Backend.FLASH_ATTN:
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
|
return max_seqlen, seqlens
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
grid_thw: list[list[int]],
|
|
) -> torch.Tensor:
|
|
# Convert grid_thw to tensor (always expecting list format now)
|
|
grid_thw = torch.tensor(grid_thw, device=x.device, dtype=torch.long)
|
|
|
|
# patchify
|
|
x = x.to(device=self.device, dtype=self.dtype)
|
|
x = self.patch_embed(x)
|
|
x = self.post_conv_layernorm(x)
|
|
|
|
# compute position embedding
|
|
rotary_pos_emb, image_type_ids = self.rot_pos_emb(grid_thw)
|
|
# compute cu_seqlens
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
|
|
grid_thw[:, 0]).cumsum(
|
|
dim=0, dtype=torch.int32)
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
|
|
|
|
# pre-compute seqlens for attn mask to reduce cuMemcpy operations
|
|
max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
|
|
x = self.embeddings(x, seqlens, grid_thw, image_type_ids[:, 0],
|
|
image_type_ids[:, 1])
|
|
|
|
# transformers
|
|
x = x.unsqueeze(1)
|
|
for blk in self.blocks:
|
|
x = blk(
|
|
x,
|
|
cu_seqlens=cu_seqlens,
|
|
rotary_pos_emb=rotary_pos_emb,
|
|
max_seqlen=max_seqlen,
|
|
seqlens=seqlens,
|
|
)
|
|
|
|
# adapter
|
|
x = self.post_layernorm(x)
|
|
|
|
x = x.view(-1, self.spatial_merge_size, self.spatial_merge_size,
|
|
x.shape[-1])
|
|
x = x.permute(0, 3, 1, 2)
|
|
x = self.downsample(x).view(-1, self.out_hidden_size)
|
|
x = self.merger(x)
|
|
|
|
return x
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("attn.qkv.", "attn.q.", "q"),
|
|
("attn.qkv.", "attn.k.", "k"),
|
|
("attn.qkv.", "attn.v.", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
loaded_params: set[str] = set()
|
|
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class Glm4vProcessingInfo(BaseProcessingInfo):
|
|
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config()
|
|
|
|
def get_tokenizer(self):
|
|
return self.ctx.tokenizer
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {"image": None, "video": 1}
|
|
|
|
def get_image_processor(self, **kwargs: object) -> Glm4vImageProcessor:
|
|
return self.get_hf_processor(**kwargs).image_processor
|
|
|
|
def get_video_processor(self, **kwargs: object) -> Glm4vVideoProcessor:
|
|
return self.get_hf_processor(**kwargs).video_processor
|
|
|
|
def _get_vision_info(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
num_frames: int = 16,
|
|
do_resize: bool = True,
|
|
max_image_pixels: int = 28 * 28 * 2 * 30000,
|
|
) -> tuple[ImageSize, int]:
|
|
hf_config = self.get_hf_config()
|
|
vision_config = hf_config.vision_config
|
|
patch_size = vision_config.patch_size
|
|
merge_size = vision_config.spatial_merge_size
|
|
temporal_patch_size = vision_config.temporal_patch_size
|
|
if do_resize:
|
|
resized_height, resized_width = smart_resize(
|
|
num_frames=num_frames
|
|
if num_frames > temporal_patch_size else temporal_patch_size,
|
|
height=image_height,
|
|
width=image_width,
|
|
factor=patch_size * merge_size,
|
|
max_pixels=max_image_pixels,
|
|
)
|
|
preprocessed_size = ImageSize(width=resized_width,
|
|
height=resized_height)
|
|
else:
|
|
preprocessed_size = ImageSize(width=image_width,
|
|
height=image_height)
|
|
|
|
# NOTE: Frames are padded to be divisible by `temporal_patch_size`
|
|
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
|
|
padded_num_frames = num_frames + num_frames % temporal_patch_size
|
|
|
|
grid_t = max(padded_num_frames // temporal_patch_size, 1)
|
|
grid_h = preprocessed_size.height // patch_size
|
|
grid_w = preprocessed_size.width // patch_size
|
|
|
|
num_patches = grid_t * grid_h * grid_w
|
|
num_vision_tokens = num_patches // (merge_size**2)
|
|
|
|
return preprocessed_size, num_vision_tokens
|
|
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
max_image_size, _ = self._get_vision_info(image_width=9999999,
|
|
image_height=9999999)
|
|
return max_image_size
|
|
|
|
def get_num_image_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> int:
|
|
_, num_image_tokens = self._get_vision_info(
|
|
image_width=image_width,
|
|
image_height=image_height,
|
|
max_image_pixels=28 * 28 * 2 * 6144,
|
|
)
|
|
return num_image_tokens
|
|
|
|
def get_max_image_tokens(self) -> int:
|
|
target_width, target_height = self.get_image_size_with_most_features()
|
|
|
|
return self.get_num_image_tokens(
|
|
image_width=target_width,
|
|
image_height=target_height,
|
|
)
|
|
|
|
def get_num_video_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
num_frames: int,
|
|
) -> int:
|
|
_, num_video_tokens = self._get_vision_info(
|
|
image_width=image_width,
|
|
image_height=image_height,
|
|
num_frames=num_frames,
|
|
max_image_pixels=28 * 28 * 2 * 30000,
|
|
)
|
|
return num_video_tokens
|
|
|
|
def _get_max_video_frames(self, max_tokens: int) -> int:
|
|
target_width, target_height = self.get_image_size_with_most_features()
|
|
|
|
num_frames = 0
|
|
|
|
while True:
|
|
next_num_frames = num_frames + 1
|
|
next_max_tokens = self.get_num_video_tokens(
|
|
image_width=target_width,
|
|
image_height=target_height,
|
|
num_frames=next_num_frames,
|
|
)
|
|
if next_max_tokens > max_tokens or next_max_tokens == 0:
|
|
break
|
|
|
|
num_frames = next_num_frames
|
|
|
|
return num_frames
|
|
|
|
def get_num_frames_with_most_features(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> int:
|
|
max_images = mm_counts.get("image", 0)
|
|
max_videos = mm_counts.get("video", 0)
|
|
|
|
max_image_tokens = self.get_max_image_tokens() * max_images
|
|
max_total_frames = self._get_max_video_frames(seq_len -
|
|
max_image_tokens)
|
|
max_frames_per_video = min(max_total_frames // max(max_videos, 1),
|
|
_MAX_FRAMES_PER_VIDEO)
|
|
|
|
return max(max_frames_per_video, 1)
|
|
|
|
def _get_video_second_idx(self, metadata: dict[str, Any],
|
|
total_frames: int) -> list[int]:
|
|
video_processor = self.get_video_processor()
|
|
|
|
video_fps = metadata.get("fps", video_processor.fps)
|
|
meta_frames = metadata.get("total_num_frames", total_frames)
|
|
max_frame_idx = meta_frames - 1
|
|
duration = metadata.get("duration",
|
|
round(max_frame_idx / video_fps) + 1)
|
|
if duration <= video_processor.max_duration:
|
|
n = int(math.floor(duration * video_processor.fps))
|
|
frame_indices = [
|
|
min(
|
|
max_frame_idx,
|
|
int(math.ceil(i * video_fps / video_processor.fps)),
|
|
) for i in range(n)
|
|
]
|
|
else:
|
|
num_samples = int(video_processor.max_duration *
|
|
video_processor.fps)
|
|
if num_samples >= meta_frames:
|
|
frame_indices = list(range(meta_frames))
|
|
else:
|
|
target_seconds = np.linspace(0,
|
|
duration,
|
|
num_samples,
|
|
endpoint=True)
|
|
frame_indices = [
|
|
min(max_frame_idx, int(math.ceil(t * video_fps)))
|
|
for t in target_seconds
|
|
]
|
|
|
|
seen, uniq = set(), []
|
|
for idx in frame_indices:
|
|
if idx not in seen:
|
|
seen.add(idx)
|
|
uniq.append(idx)
|
|
if len(uniq) & 1:
|
|
uniq.append(uniq[-1])
|
|
frame_indices = uniq
|
|
|
|
full_second_idxs = [int(idx / video_fps) for idx in frame_indices]
|
|
timestamps_list = full_second_idxs[::2]
|
|
selected_timestamps = []
|
|
for idx in range(0, len(timestamps_list)):
|
|
selected_timestamps.append(timestamps_list[idx])
|
|
return selected_timestamps
|
|
|
|
|
|
class Glm4vDummyInputsBuilder(BaseDummyInputsBuilder[Glm4vProcessingInfo]):
|
|
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_images = mm_counts.get("image", 0)
|
|
num_videos = mm_counts.get("video", 0)
|
|
|
|
hf_config = self.info.get_hf_config()
|
|
hf_processor = self.info.get_hf_processor()
|
|
tokenizer = self.info.get_tokenizer()
|
|
|
|
image_token: str = hf_processor.image_token
|
|
video_token_ids = [
|
|
hf_config.video_start_token_id,
|
|
hf_processor.video_token_id,
|
|
hf_config.video_end_token_id,
|
|
]
|
|
video_token = tokenizer.decode(video_token_ids)
|
|
|
|
return image_token * num_images + video_token * num_videos
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
num_videos = mm_counts.get("video", 0)
|
|
|
|
target_width, target_height = (
|
|
self.info.get_image_size_with_most_features())
|
|
target_num_frames = self.info.get_num_frames_with_most_features(
|
|
seq_len, mm_counts)
|
|
return {
|
|
"image":
|
|
self._get_dummy_images(width=target_width,
|
|
height=target_height,
|
|
num_images=num_images),
|
|
"video":
|
|
self._get_dummy_videos(
|
|
width=target_width,
|
|
height=target_height,
|
|
num_frames=target_num_frames,
|
|
num_videos=num_videos,
|
|
),
|
|
}
|
|
|
|
def _get_dummy_videos(
|
|
self,
|
|
*,
|
|
width: int,
|
|
height: int,
|
|
num_frames: int,
|
|
num_videos: int,
|
|
) -> list[VideoItem]:
|
|
video = np.full((num_frames, width, height, 3), 255, dtype=np.uint8)
|
|
video_items = []
|
|
for i in range(num_videos):
|
|
video_metadata = {
|
|
"fps": 2.0,
|
|
"duration": num_frames / 2.0,
|
|
"total_num_frames": num_frames,
|
|
"video_backend": "opencv",
|
|
}
|
|
video_item = (video.copy(), video_metadata)
|
|
video_items.append(video_item)
|
|
|
|
return video_items
|
|
|
|
|
|
class Glm4vMultiModalProcessor(BaseMultiModalProcessor[Glm4vProcessingInfo]):
|
|
|
|
def _get_data_parser(self) -> MultiModalDataParser:
|
|
return MultiModalDataParser(video_needs_metadata=True)
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
mm_data = dict(mm_data)
|
|
processor = self.info.get_hf_processor(**mm_kwargs)
|
|
|
|
# GLM-4.1V use `image_token_id` as video placeholder, we need to
|
|
# replace it with `video_token_id` for video processing. So we
|
|
# separate video processing from image processing.
|
|
if ("videos" in mm_data and isinstance(mm_data["videos"], list)
|
|
and len(mm_data["videos"]) > 0):
|
|
video_grid_thw_lst = []
|
|
pixel_values_videos_lst = []
|
|
for item in mm_data.pop("videos", []):
|
|
video_array, metadata = item
|
|
|
|
# FIXME(Isotr0py): Activate the below logic after we can disable
|
|
# resampling from video loader backend.
|
|
# assert metadata["total_num_frames"] == len(video_array), (
|
|
# f"Total frames {metadata['total_num_frames']} does not "
|
|
# f"match the length of video array {len(video_array)}.")
|
|
|
|
# NOTE: Temporary workaround for resampled videos.
|
|
# this can cause a divergence with HF implementation if
|
|
# the input video is resampled in advance.
|
|
|
|
if metadata["total_num_frames"] != len(video_array):
|
|
logger.warning(
|
|
"Total frames in metadata "
|
|
"(%s) does not match the length of "
|
|
"video array %s. This can "
|
|
"be because the video is resampled "
|
|
"in advance. This may cause "
|
|
"a divergence with HF implementation.",
|
|
metadata["total_num_frames"],
|
|
len(video_array),
|
|
)
|
|
metadata["total_num_frames"] = len(video_array)
|
|
metadata = VideoMetadata(**metadata)
|
|
|
|
video_mm_data = dict()
|
|
video_mm_data["videos"] = [[video_array]]
|
|
video_mm_data["video_metadata"] = [[metadata]]
|
|
|
|
video_outputs = super()._call_hf_processor(
|
|
prompt="<|begin_of_video|><|video|><|end_of_video|>",
|
|
mm_data=video_mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
input_ids = video_outputs.pop("input_ids")
|
|
input_ids[input_ids == processor.image_token_id] = (
|
|
processor.video_token_id)
|
|
video_placeholder = processor.tokenizer.batch_decode(
|
|
input_ids)[0]
|
|
prompt = prompt.replace(
|
|
"<|begin_of_video|><|video|><|end_of_video|>",
|
|
video_placeholder,
|
|
)
|
|
|
|
video_grid_thw_lst.append(video_outputs["video_grid_thw"])
|
|
pixel_values_videos_lst.append(
|
|
video_outputs["pixel_values_videos"])
|
|
video_outputs = dict(
|
|
pixel_values_videos=torch.cat(pixel_values_videos_lst),
|
|
video_grid_thw=torch.cat(video_grid_thw_lst),
|
|
)
|
|
else:
|
|
video_outputs = dict()
|
|
|
|
processed_outputs = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
combined_outputs = dict(
|
|
processed_outputs,
|
|
**video_outputs,
|
|
)
|
|
return BatchFeature(combined_outputs)
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return _create_qwen2vl_field_factory(
|
|
self.info.get_hf_config().vision_config.spatial_merge_size)(
|
|
hf_inputs)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, Any],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
image_processor = self.info.get_image_processor(
|
|
**hf_processor_mm_kwargs)
|
|
tokenizer = self.info.get_tokenizer()
|
|
hf_config = self.info.get_hf_config()
|
|
|
|
boi_token_id = hf_config.image_start_token_id
|
|
eoi_token_id = hf_config.image_end_token_id
|
|
|
|
bov_token_id = hf_config.video_start_token_id
|
|
eov_token_id = hf_config.video_end_token_id
|
|
|
|
merge_length = image_processor.merge_size**2
|
|
|
|
def get_image_replacement_glm4v(item_idx: int):
|
|
out_item = out_mm_kwargs["image"][item_idx]
|
|
grid_thw = out_item["image_grid_thw"].data
|
|
assert isinstance(grid_thw, torch.Tensor)
|
|
|
|
num_tokens = int(grid_thw.prod()) // merge_length
|
|
return [hf_processor.image_token_id] * num_tokens
|
|
|
|
def get_video_replacement_glm4v(item_idx: int):
|
|
out_item = out_mm_kwargs["video"][item_idx]
|
|
grid_thw = out_item["video_grid_thw"].data
|
|
assert isinstance(grid_thw, torch.Tensor)
|
|
|
|
video, metadata = mm_items["video"][item_idx]
|
|
timestamps = self.info._get_video_second_idx(metadata, len(video))
|
|
frames_idx_token = [
|
|
tokenizer.encode(str(i), add_special_tokens=False)
|
|
for i in timestamps
|
|
]
|
|
num_tokens_per_frame = int(grid_thw[1:].prod()) // merge_length
|
|
placeholder = []
|
|
placeholder.append(bov_token_id)
|
|
for frame_idx in frames_idx_token:
|
|
placeholder.append(boi_token_id)
|
|
placeholder.extend([hf_processor.video_token_id] *
|
|
num_tokens_per_frame)
|
|
placeholder.append(eoi_token_id)
|
|
placeholder.extend(frame_idx)
|
|
placeholder.append(eov_token_id)
|
|
return PromptUpdateDetails.select_token_id(
|
|
placeholder,
|
|
embed_token_id=hf_processor.video_token_id,
|
|
)
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=hf_processor.image_token,
|
|
replacement=get_image_replacement_glm4v,
|
|
),
|
|
PromptReplacement(
|
|
modality="video",
|
|
target="<|begin_of_video|><|video|><|end_of_video|>",
|
|
replacement=get_video_replacement_glm4v,
|
|
),
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Glm4vMultiModalProcessor,
|
|
info=Glm4vProcessingInfo,
|
|
dummy_inputs=Glm4vDummyInputsBuilder,
|
|
)
|
|
class Glm4vForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|
SupportsLoRA, SupportsPP):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": ["gate_up_proj"]
|
|
}
|
|
|
|
# To ensure correct weight loading and mapping.
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
"lm_head.": "language_model.lm_head.",
|
|
"model.language_model.": "language_model.model.",
|
|
"model.visual.": "visual.",
|
|
})
|
|
|
|
supports_encoder_tp_data = True
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
|
|
if modality.startswith("image"):
|
|
return "<|begin_of_image|><|image|><|end_of_image|>"
|
|
if modality.startswith("video"):
|
|
return "<|begin_of_video|><|video|><|end_of_video|>"
|
|
|
|
raise ValueError("Only image or video modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
|
|
|
|
self.visual = Glm4vVisionTransformer(
|
|
config.vision_config,
|
|
norm_eps=getattr(config, "rms_norm_eps", 1e-5),
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "visual"),
|
|
use_data_parallel=self.use_data_parallel,
|
|
)
|
|
|
|
if config.model_type == "glm4v":
|
|
architectures = ["Glm4ForCausalLM"]
|
|
elif config.model_type == "glm4v_moe":
|
|
architectures = ["Glm4MoeForCausalLM"]
|
|
else:
|
|
architectures = None
|
|
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
architectures=architectures)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors)
|
|
|
|
def _validate_and_reshape_mm_tensor(self, mm_input: object,
|
|
name: str) -> torch.Tensor:
|
|
if not isinstance(mm_input, (torch.Tensor, list)):
|
|
raise ValueError(
|
|
f"Incorrect type of {name}. Got type: {type(mm_input)}")
|
|
if isinstance(mm_input, torch.Tensor):
|
|
if mm_input.ndim == 2:
|
|
return mm_input
|
|
if mm_input.ndim != 3:
|
|
raise ValueError(f"{name} should be 2D or batched 3D tensor. "
|
|
f"Got ndim: {mm_input.ndim} "
|
|
f"(shape={mm_input.shape})")
|
|
return torch.concat(list(mm_input))
|
|
else:
|
|
return torch.concat(mm_input)
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object) -> Optional[Glm4vImageInputs]:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
image_grid_thw = kwargs.pop("image_grid_thw", None)
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
if pixel_values is not None:
|
|
pixel_values = self._validate_and_reshape_mm_tensor(
|
|
pixel_values, "image pixel values")
|
|
image_grid_thw = self._validate_and_reshape_mm_tensor(
|
|
image_grid_thw, "image grid_thw")
|
|
|
|
return Glm4vImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
image_grid_thw=image_grid_thw,
|
|
)
|
|
|
|
if image_embeds is not None:
|
|
image_embeds = self._validate_and_reshape_mm_tensor(
|
|
image_embeds, "image embeds")
|
|
image_grid_thw = self._validate_and_reshape_mm_tensor(
|
|
image_grid_thw, "image grid_thw")
|
|
|
|
return Glm4vImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
image_embeds=image_embeds,
|
|
image_grid_thw=image_grid_thw,
|
|
)
|
|
|
|
def _parse_and_validate_video_input(
|
|
self, **kwargs: object) -> Optional[Glm4vVideoInputs]:
|
|
pixel_values_videos = kwargs.pop("pixel_values_videos", None)
|
|
video_embeds = kwargs.pop("video_embeds", None)
|
|
video_grid_thw = kwargs.pop("video_grid_thw", None)
|
|
|
|
if pixel_values_videos is None and video_embeds is None:
|
|
return None
|
|
|
|
if pixel_values_videos is not None:
|
|
pixel_values_videos = self._validate_and_reshape_mm_tensor(
|
|
pixel_values_videos, "video pixel values")
|
|
video_grid_thw = self._validate_and_reshape_mm_tensor(
|
|
video_grid_thw, "video grid_thw")
|
|
|
|
return Glm4vVideoPixelInputs(
|
|
type="pixel_values_videos",
|
|
pixel_values_videos=pixel_values_videos,
|
|
video_grid_thw=video_grid_thw,
|
|
)
|
|
|
|
if video_embeds is not None:
|
|
video_embeds = self._validate_and_reshape_mm_tensor(
|
|
video_embeds, "video embeds")
|
|
video_grid_thw = self._validate_and_reshape_mm_tensor(
|
|
video_grid_thw, "video grid_thw")
|
|
|
|
return Glm4vVideoEmbeddingInputs(
|
|
type="video_embeds",
|
|
video_embeds=video_embeds,
|
|
video_grid_thw=video_grid_thw,
|
|
)
|
|
|
|
def _process_image_input(
|
|
self, image_input: Glm4vImageInputs) -> tuple[torch.Tensor, ...]:
|
|
grid_thw = image_input["image_grid_thw"]
|
|
assert grid_thw.ndim == 2
|
|
grid_thw_list = grid_thw.tolist()
|
|
|
|
if image_input["type"] == "image_embeds":
|
|
image_embeds = image_input["image_embeds"].type(self.visual.dtype)
|
|
else:
|
|
pixel_values = image_input["pixel_values"].type(self.visual.dtype)
|
|
if self.use_data_parallel:
|
|
return run_dp_sharded_mrope_vision_model(self.visual,
|
|
pixel_values,
|
|
grid_thw.tolist(),
|
|
rope_type="rope_3d")
|
|
else:
|
|
image_embeds = self.visual(pixel_values,
|
|
grid_thw=grid_thw.tolist())
|
|
merge_size = self.visual.spatial_merge_size
|
|
sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
|
|
(merge_size * merge_size)).tolist()
|
|
return image_embeds.split(sizes)
|
|
|
|
def _process_video_input(
|
|
self, video_input: Glm4vVideoInputs) -> tuple[torch.Tensor, ...]:
|
|
grid_thw = video_input["video_grid_thw"]
|
|
assert grid_thw.ndim == 2
|
|
grid_thw_list = grid_thw.tolist()
|
|
|
|
if video_input["type"] == "video_embeds":
|
|
video_embeds = video_input["video_embeds"].type(self.visual.dtype)
|
|
else:
|
|
pixel_values_videos = video_input["pixel_values_videos"].type(
|
|
self.visual.dtype)
|
|
if self.use_data_parallel:
|
|
return run_dp_sharded_mrope_vision_model(self.visual,
|
|
pixel_values_videos,
|
|
grid_thw.tolist(),
|
|
rope_type="rope_3d")
|
|
else:
|
|
video_embeds = self.visual(pixel_values_videos,
|
|
grid_thw=grid_thw.tolist())
|
|
# Split concatenated embeddings for each video item.
|
|
merge_size = self.visual.spatial_merge_size
|
|
sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
|
|
(merge_size * merge_size)).tolist()
|
|
return video_embeds.split(sizes)
|
|
|
|
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
|
|
mm_input_by_modality = {}
|
|
|
|
# Preserve the order of modalities if there are multiple of them
|
|
# from the order of kwargs.
|
|
for input_key in kwargs:
|
|
if (input_key in ("pixel_values", "image_embeds")
|
|
and "image" not in mm_input_by_modality):
|
|
mm_input_by_modality["image"] = (
|
|
self._parse_and_validate_image_input(**kwargs))
|
|
if (input_key in ("pixel_values_videos", "video_embeds")
|
|
and "video" not in mm_input_by_modality):
|
|
mm_input_by_modality["video"] = (
|
|
self._parse_and_validate_video_input(**kwargs))
|
|
return mm_input_by_modality
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def get_multimodal_embeddings(
|
|
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
|
|
mm_input_by_modality = self._parse_and_validate_multimodal_inputs(
|
|
**kwargs)
|
|
if not mm_input_by_modality:
|
|
return None
|
|
|
|
# The result multimodal_embeddings is tuple of tensors, with each
|
|
# tensor correspoending to a multimodal data item (image or video).
|
|
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
|
|
|
|
# NOTE: It is important to iterate over the keys in this dictionary
|
|
# to preserve the order of the modalities.
|
|
for modality in mm_input_by_modality:
|
|
multimodal_input = mm_input_by_modality[modality]
|
|
if modality == "image":
|
|
vision_embeddings = self._process_image_input(multimodal_input)
|
|
multimodal_embeddings += vision_embeddings
|
|
if modality == "video":
|
|
video_embeddings = self._process_video_input(multimodal_input)
|
|
multimodal_embeddings += video_embeddings
|
|
return multimodal_embeddings
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
|
if (multimodal_embeddings is not None
|
|
and len(multimodal_embeddings) != 0
|
|
and all(embed.numel() > 0 for embed in multimodal_embeddings)):
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids,
|
|
inputs_embeds,
|
|
multimodal_embeddings,
|
|
[self.config.image_token_id, self.config.video_token_id],
|
|
)
|
|
return inputs_embeds
|
|
|
|
def get_input_embeddings_v0(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
image_input: Optional[Glm4vImageInputs] = None,
|
|
video_input: Optional[Glm4vVideoInputs] = None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.get_input_embeddings(input_ids)
|
|
if image_input is not None:
|
|
image_embeds = self._process_image_input(image_input)
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids,
|
|
inputs_embeds,
|
|
image_embeds,
|
|
placeholder_token_id=self.config.image_token_id,
|
|
)
|
|
|
|
if video_input is not None:
|
|
video_embeds = self._process_video_input(video_input)
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids,
|
|
inputs_embeds,
|
|
video_embeds,
|
|
placeholder_token_id=self.config.video_token_id,
|
|
)
|
|
return inputs_embeds
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs: object,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
"""Run forward pass for GLM-4V.
|
|
|
|
Args:
|
|
input_ids: Flattened (concatenated) input_ids corresponding to a
|
|
batch.
|
|
positions: Flattened (concatenated) position ids corresponding to a
|
|
batch.
|
|
**NOTE**: If mrope is enabled (default setting for GLM-4V
|
|
opensource models), the shape will be `(3, seq_len)`,
|
|
otherwise it will be `(seq_len,).
|
|
pixel_values: Pixel values to be fed to a model.
|
|
`None` if no images are passed.
|
|
image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
|
|
`None` if no images are passed.
|
|
pixel_values_videos: Pixel values of videos to be fed to a model.
|
|
`None` if no videos are passed.
|
|
video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
|
|
`None` if no videos are passed.
|
|
second_per_grid_ts: Tensor `(num_videos)` of video time interval (
|
|
in seconds) for each grid along the temporal dimension in the
|
|
3D position IDs. `None` if no videos are passed.
|
|
"""
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
# NOTE: In v1, inputs_embeds is always generated at model runner from
|
|
# `get_multimodal_embeddings` and `get_input_embeddings`, this
|
|
# condition is only for v0 compatibility.
|
|
elif inputs_embeds is None:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
video_input = self._parse_and_validate_video_input(**kwargs)
|
|
|
|
if image_input is None and video_input is None:
|
|
inputs_embeds = None
|
|
else:
|
|
if uses_mrope(self.config):
|
|
assert positions.ndim == 2 and positions.size(0) == 3, (
|
|
"multimodal section rotary embedding requires "
|
|
f"(3, seq_len) positions, but got {positions.size()}")
|
|
inputs_embeds = self.get_input_embeddings_v0(
|
|
input_ids,
|
|
image_input=image_input,
|
|
video_input=video_input)
|
|
input_ids = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
return self.language_model.compute_logits(hidden_states,
|
|
sampling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
|
|
def get_mm_mapping(self) -> MultiModelKeys:
|
|
"""
|
|
Get the module prefix in multimodal models
|
|
"""
|
|
return MultiModelKeys.from_string_field(
|
|
language_model="language_model.model",
|
|
connector="visual.merger.",
|
|
tower_model="visual.",
|
|
)
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Glm4vMultiModalProcessor,
|
|
info=Glm4vProcessingInfo,
|
|
dummy_inputs=Glm4vDummyInputsBuilder,
|
|
)
|
|
class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|