Files
vllm/tests/distributed/test_parallel_state.py
2024-06-27 15:15:24 +08:00

50 lines
1.5 KiB
Python

from typing import Any, Dict
import torch
from vllm.distributed.parallel_state import (_split_tensor_dict,
_update_nested_dict)
def test_split_tensor_dict():
test_dict = {
"key_a": "a",
"key_b": torch.arange(8, dtype=torch.float32),
"key_c": {
"key_1": torch.arange(5, dtype=torch.float32),
"key_2": torch.tensor([], dtype=torch.float32),
"key_3": 123,
},
"key_d": {},
}
metadata_list, tensor_list = _split_tensor_dict(test_dict)
assert len(metadata_list) == 6
assert torch.allclose(tensor_list[0], test_dict["key_b"])
assert torch.allclose(tensor_list[1], test_dict["key_c"]["key_1"])
assert torch.allclose(tensor_list[2], test_dict["key_c"]["key_2"])
def test_update_nested_dict():
flattened_keys_values = [("key1%key2%key3", "value1"),
("key1%key2%key4", "value2"),
("key1%key5", "value3"), ("key6%key7", "value4"),
("key8", "value5")]
res: Dict[str, Any] = {}
# Update the nested dictionary with each flattened key-value pair
for flat_key, value in flattened_keys_values:
_update_nested_dict(res, flat_key, value)
assert res == {
"key1": {
"key2": {
"key3": "value1",
"key4": "value2"
},
"key5": "value3"
},
"key6": {
"key7": "value4"
},
"key8": "value5"
}