Files
vllm/tests/kernels/core/test_mrope.py

250 lines
9.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import NamedTuple
import pytest
import torch
from packaging.version import Version
from transformers import AutoConfig
from transformers import __version__ as TRANSFORMERS_VERSION
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.platforms import current_platform
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def generate_test_data(num_tokens: int, num_q_heads: int, num_kv_heads: int,
head_size: int, max_position_embeddings: int,
dtype: torch.dtype, device: torch.device):
"""Generate test data for given configuration."""
current_platform.seed_everything(42)
# Create 2D positions (3, num_tokens) for multimodal case
positions = torch.randint(0,
max_position_embeddings // 4, (3, num_tokens),
device=device)
# Create query and key tensors
query = torch.randn(num_tokens,
num_q_heads * head_size,
dtype=dtype,
device=device)
key = torch.randn(num_tokens,
num_kv_heads * head_size,
dtype=dtype,
device=device)
return positions, query, key
class MRoPETestInfo(NamedTuple):
model_name: str
# https://github.com/pytorch/pytorch/blob/main/torch/testing/_comparison.py#L1317
atol: float = 1e-2
rtol: float = 1.6e-2
marks: list[pytest.MarkDecorator] = []
TRANSFORMERS_BASE_VERSION = Version(TRANSFORMERS_VERSION).base_version
MODELS_TO_TEST = [
MRoPETestInfo(model_name="zai-org/GLM-4.1V-9B-Thinking"),
MRoPETestInfo(model_name="Qwen/Qwen2-VL-7B-Instruct"),
MRoPETestInfo(model_name="Qwen/Qwen2-VL-72B-Instruct"),
MRoPETestInfo(model_name="Qwen/Qwen2.5-VL-72B-Instruct"),
MRoPETestInfo(
model_name="Qwen/Qwen3-VL-4B-Instruct",
marks=[
pytest.mark.skipif(
Version(TRANSFORMERS_BASE_VERSION) < Version("4.57.0"),
reason="Qwen3-VL only available after Transformers v4.57",
)
]),
MRoPETestInfo(
model_name="Qwen/Qwen3-VL-30B-A3B-Instruct",
marks=[
pytest.mark.skipif(
Version(TRANSFORMERS_BASE_VERSION) < Version("4.57.0"),
reason="Qwen3-VL only available after Transformers v4.57",
)
]),
]
num_tokens_list = [11, 8192]
@pytest.mark.skipif(not current_platform.is_cuda_alike(),
reason="Skipping CUDA/ROCm only tests.")
@pytest.mark.parametrize("model_info, model_name", [
pytest.param(test_config, test_config.model_name, marks=test_config.marks)
for test_config in MODELS_TO_TEST
])
@pytest.mark.parametrize("tp_size", [1, 2])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("num_tokens", num_tokens_list)
def test_mrope(model_name: str, model_info: MRoPETestInfo, tp_size: int,
dtype: torch.dtype, num_tokens: int):
atol = model_info.atol
rtol = model_info.rtol
config = AutoConfig.from_pretrained(model_name)
config = config.get_text_config()
# get the model config
total_num_kv_heads = config.num_key_value_heads
total_num_heads = config.num_attention_heads
num_heads = total_num_heads // tp_size
num_kv_heads = max(1, total_num_kv_heads // tp_size)
head_dim = (config.head_dim if hasattr(config, "head_dim") else
config.hidden_size // total_num_heads)
is_neox_style = True
rope_theta = config.rope_theta
max_position = config.max_position_embeddings
partial_rotary_factor = getattr(config, "partial_rotary_factor", 1.0)
rotary_dim = int(head_dim * partial_rotary_factor)
mrope_helper_class = get_rope(
head_size=head_dim,
rotary_dim=rotary_dim,
max_position=max_position,
base=rope_theta,
is_neox_style=is_neox_style,
rope_scaling=config.rope_scaling,
dtype=dtype,
).to(device=device)
# create q k v input tensors
# create rotary pos emb input tensors
positions, query, key = generate_test_data(num_tokens, num_heads,
num_kv_heads, head_dim,
max_position, dtype, device)
query_native, key_native = mrope_helper_class.forward_native(
positions,
query.clone(),
key.clone(),
)
query_cuda, key_cuda = mrope_helper_class.forward_cuda(
positions,
query.clone(),
key.clone(),
)
torch.testing.assert_close(query_native, query_cuda, atol=atol, rtol=rtol)
torch.testing.assert_close(key_native, key_cuda, atol=atol, rtol=rtol)
@pytest.mark.skipif(not current_platform.is_cuda_alike(),
reason="Skipping CUDA/ROCm only tests.")
@pytest.mark.parametrize("model_info, model_name", [
pytest.param(test_config, test_config.model_name, marks=test_config.marks)
for test_config in MODELS_TO_TEST
])
@pytest.mark.parametrize("tp_size", [1, 2])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("num_tokens", num_tokens_list)
def test_mrope_torch_compile_tracing(model_name: str,
model_info: MRoPETestInfo, tp_size: int,
dtype: torch.dtype, num_tokens: int):
atol = model_info.atol
rtol = model_info.rtol
config = AutoConfig.from_pretrained(model_name)
config = config.get_text_config()
# get the model config
total_num_kv_heads = config.num_key_value_heads
total_num_heads = config.num_attention_heads
num_heads = total_num_heads // tp_size
num_kv_heads = max(1, total_num_kv_heads // tp_size)
head_dim = (config.head_dim if hasattr(config, "head_dim") else
config.hidden_size // total_num_heads)
is_neox_style = True
rope_theta = config.rope_theta
max_position = config.max_position_embeddings
partial_rotary_factor = getattr(config, "partial_rotary_factor", 1.0)
rotary_dim = int(head_dim * partial_rotary_factor)
mrope_helper_class = get_rope(
head_size=head_dim,
rotary_dim=rotary_dim,
max_position=max_position,
base=rope_theta,
is_neox_style=is_neox_style,
rope_scaling=config.rope_scaling,
dtype=dtype,
).to(device=device)
# Generate test data
positions, query, key = generate_test_data(num_tokens, num_heads,
num_kv_heads, head_dim,
max_position, dtype, device)
# Create a wrapper that makes the in-place function appear functional
def functional_forward_cuda(pos, q, k):
"""Wrapper that converts in-place operation to functional style
CUDA Graph does not support in-place operations.
This wrapper creates working copies of the
input tensors and modifies them.
"""
q_work = q.clone() # Create working copies
k_work = k.clone()
# Your in-place function modifies q_work and k_work
mrope_helper_class.forward_cuda(pos, q_work, k_work)
return q_work, k_work # Return the modified tensors
# Get reference results
query_native, key_native = mrope_helper_class.forward_native(
positions,
query.clone(),
key.clone(),
)
try:
compiled_forward_cuda = torch.compile(functional_forward_cuda,
fullgraph=True,
backend="inductor",
mode="reduce-overhead",
dynamic=False)
# Run compiled version
query_compiled_cuda, key_compiled_cuda = compiled_forward_cuda(
positions,
query,
key,
)
# Run original version for comparison
query_cuda = query.clone()
key_cuda = key.clone()
mrope_helper_class.forward_cuda(positions, query_cuda, key_cuda)
# Verify results
torch.testing.assert_close(query_compiled_cuda,
query_cuda,
atol=atol,
rtol=rtol)
torch.testing.assert_close(key_compiled_cuda,
key_cuda,
atol=atol,
rtol=rtol)
torch.testing.assert_close(query_compiled_cuda,
query_native,
atol=atol,
rtol=rtol)
torch.testing.assert_close(key_compiled_cuda,
key_native,
atol=atol,
rtol=rtol)
print("✓ forward_cuda successfully traced with torch.compile inductor")
except Exception as e:
pytest.fail(
f"forward_cuda failed to trace with torch.compile inductor: {e}")