vLLM CLI Guide
The vllm command-line tool is used to run and manage vLLM models. You can start by viewing the help message with:
vllm --help
Available Commands:
vllm {chat,complete,serve,bench,collect-env,run-batch}
serve
Starts the vLLM OpenAI Compatible API server.
Start with a model:
vllm serve meta-llama/Llama-2-7b-hf
Specify the port:
vllm serve meta-llama/Llama-2-7b-hf --port 8100
Serve over a Unix domain socket:
vllm serve meta-llama/Llama-2-7b-hf --uds /tmp/vllm.sock
Check with --help for more options:
# To list all groups
vllm serve --help=listgroup
# To view a argument group
vllm serve --help=ModelConfig
# To view a single argument
vllm serve --help=max-num-seqs
# To search by keyword
vllm serve --help=max
# To view full help with pager (less/more)
vllm serve --help=page
See vllm serve for the full reference of all available arguments.
chat
Generate chat completions via the running API server.
# Directly connect to localhost API without arguments
vllm chat
# Specify API url
vllm chat --url http://{vllm-serve-host}:{vllm-serve-port}/v1
# Quick chat with a single prompt
vllm chat --quick "hi"
See vllm chat for the full reference of all available arguments.
complete
Generate text completions based on the given prompt via the running API server.
# Directly connect to localhost API without arguments
vllm complete
# Specify API url
vllm complete --url http://{vllm-serve-host}:{vllm-serve-port}/v1
# Quick complete with a single prompt
vllm complete --quick "The future of AI is"
See vllm complete for the full reference of all available arguments.
bench
Run benchmark tests for latency online serving throughput and offline inference throughput.
To use benchmark commands, please install with extra dependencies using pip install vllm[bench]
.
Available Commands:
vllm bench {latency, serve, throughput}
latency
Benchmark the latency of a single batch of requests.
vllm bench latency \
--model meta-llama/Llama-3.2-1B-Instruct \
--input-len 32 \
--output-len 1 \
--enforce-eager \
--load-format dummy
See vllm bench latency for the full reference of all available arguments.
serve
Benchmark the online serving throughput.
vllm bench serve \
--model meta-llama/Llama-3.2-1B-Instruct \
--host server-host \
--port server-port \
--random-input-len 32 \
--random-output-len 4 \
--num-prompts 5
See vllm bench serve for the full reference of all available arguments.
throughput
Benchmark offline inference throughput.
vllm bench throughput \
--model meta-llama/Llama-3.2-1B-Instruct \
--input-len 32 \
--output-len 1 \
--enforce-eager \
--load-format dummy
See vllm bench throughput for the full reference of all available arguments.
collect-env
Start collecting environment information.
vllm collect-env
run-batch
Run batch prompts and write results to file.
Running with a local file:
vllm run-batch \
-i offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
Using remote file:
vllm run-batch \
-i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
See vllm run-batch for the full reference of all available arguments.
More Help
For detailed options of any subcommand, use:
vllm <subcommand> --help