mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com> Signed-off-by: simon-mo <simon.mo@hey.com>
95 lines
3.7 KiB
Python
95 lines
3.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.distributed import ProcessGroup
|
|
|
|
import vllm.envs as envs
|
|
from vllm.logger import init_logger
|
|
|
|
from .base_device_communicator import DeviceCommunicatorBase
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class XpuCommunicator(DeviceCommunicatorBase):
|
|
|
|
def __init__(self,
|
|
cpu_group: ProcessGroup,
|
|
device: Optional[torch.device] = None,
|
|
device_group: Optional[ProcessGroup] = None,
|
|
unique_name: str = ""):
|
|
super().__init__(cpu_group, device, device_group, unique_name)
|
|
if self.use_all2all:
|
|
all2all_backend = envs.VLLM_ALL2ALL_BACKEND
|
|
if all2all_backend != "naive":
|
|
logger.warning(
|
|
"`%s` all2all manager is not supported on XPU."
|
|
"Falling back to `naive` all2all manager for XPU.",
|
|
all2all_backend)
|
|
all2all_backend = "naive"
|
|
if all2all_backend == "naive":
|
|
from .all2all import NaiveAll2AllManager
|
|
self.all2all_manager = NaiveAll2AllManager(self.cpu_group)
|
|
logger.info("Using naive all2all manager.")
|
|
|
|
def all_reduce(self, input_) -> torch.Tensor:
|
|
dist.all_reduce(input_, group=self.device_group)
|
|
return input_
|
|
|
|
def gather(self,
|
|
input_: torch.Tensor,
|
|
dst: int = 0,
|
|
dim: int = -1) -> Optional[torch.Tensor]:
|
|
assert -input_.dim() <= dim < input_.dim(), (
|
|
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
|
|
if dim < 0:
|
|
# Convert negative dim to positive.
|
|
dim += input_.dim()
|
|
# For xpu path, gather doesn't work properly together with ray
|
|
# cluster so we use all_gather instead for now.
|
|
input_size = input_.size()
|
|
# Allocate output tensor.
|
|
output_tensor = torch.empty((self.world_size, ) + input_size,
|
|
dtype=input_.dtype,
|
|
device=input_.device)
|
|
# All-gather.
|
|
dist.all_gather_into_tensor(output_tensor,
|
|
input_,
|
|
group=self.device_group)
|
|
if self.rank_in_group == dst:
|
|
# Reshape
|
|
output_tensor = output_tensor.movedim(0, dim)
|
|
output_tensor = output_tensor.reshape(input_size[:dim] +
|
|
(self.world_size *
|
|
input_size[dim], ) +
|
|
input_size[dim + 1:])
|
|
else:
|
|
output_tensor = None
|
|
return output_tensor
|
|
|
|
def broadcast(self, input_: torch.Tensor, src: int = 0) -> None:
|
|
dist.broadcast(input_, src=src, group=self.device_group)
|
|
|
|
def dispatch(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
is_sequence_parallel: bool = False
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
assert self.all2all_manager is not None
|
|
hidden_states, router_logits = self.all2all_manager.dispatch(
|
|
hidden_states, router_logits, is_sequence_parallel)
|
|
return hidden_states, router_logits
|
|
|
|
def combine(self,
|
|
hidden_states: torch.Tensor,
|
|
is_sequence_parallel: bool = False) -> torch.Tensor:
|
|
assert self.all2all_manager is not None
|
|
hidden_states = self.all2all_manager.combine(hidden_states,
|
|
is_sequence_parallel)
|
|
return hidden_states
|