Files
vllm/tests/compile/piecewise/test_simple.py
Boyuan Feng 8945b001db [torch.compile] CUDAGraph Inductor partition integration (#24281)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
Signed-off-by: Boyuan Feng <fby.1994@gmail.com>
Signed-off-by: boyuanfeng <boyuan@meta.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-20 01:02:15 +00:00

156 lines
5.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Test the piecewise compilation with a simple model so that we
can exactly calculate the expected output and side effects.
"""
import pytest
import torch
from torch import nn
from vllm.compilation.counter import compilation_counter
from vllm.compilation.decorators import support_torch_compile
from vllm.config import (CompilationConfig, CompilationLevel, CUDAGraphMode,
VllmConfig, set_current_vllm_config)
from vllm.envs import VLLM_USE_V1
from vllm.forward_context import BatchDescriptor, set_forward_context
from vllm.utils import is_torch_equal_or_newer
# This import automatically registers `torch.ops.silly.attention`
from ..silly_attention import get_global_counter, reset_global_counter
@support_torch_compile
class SillyModel(nn.Module):
def __init__(self,
*,
vllm_config: VllmConfig,
prefix: str = '',
**kwargs) -> None:
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overall effect:
x = 3 * x + 19
global_counter += 2
"""
x = x + 1
x = x + 2
out = torch.empty_like(x)
torch.ops.silly.attention(x, x, x, out)
x = out
x = x - 2
x = x - 1
out = torch.empty_like(x)
torch.ops.silly.attention(x, x, x, out)
x = out
x = x + 1
return x
def _run_simple_model(
splitting_ops,
use_inductor_graph_partition,
use_inductor,
expected_num_piecewise_graphs_seen,
expected_num_piecewise_capturable_graphs_seen,
expected_num_backend_compilations,
expected_num_cudagraph_captured,
):
vllm_config = VllmConfig(compilation_config=CompilationConfig(
level=CompilationLevel.PIECEWISE,
use_cudagraph=True,
use_inductor=use_inductor,
splitting_ops=splitting_ops,
use_inductor_graph_partition=use_inductor_graph_partition,
cudagraph_copy_inputs=True,
cudagraph_capture_sizes=[1, 2],
))
with set_current_vllm_config(vllm_config):
model = SillyModel(vllm_config=vllm_config, prefix='')
inputs = torch.randn(100).cuda()
with compilation_counter.expect(
num_graphs_seen=1, # one graph for the model
num_piecewise_graphs_seen=expected_num_piecewise_graphs_seen,
num_piecewise_capturable_graphs_seen=
expected_num_piecewise_capturable_graphs_seen,
num_backend_compilations=expected_num_backend_compilations,
num_cudagraph_captured=expected_num_cudagraph_captured,
), set_forward_context(None,
vllm_config=vllm_config): # background context
# warm up with background context
model(inputs)
# capturing/replaying should under context of cudagraph dispatching
with set_forward_context(
None,
vllm_config=vllm_config,
cudagraph_runtime_mode=CUDAGraphMode.PIECEWISE,
batch_descriptor=BatchDescriptor(num_tokens=2, )):
model(torch.randn(2).cuda())
with set_forward_context(
None,
vllm_config=vllm_config,
cudagraph_runtime_mode=CUDAGraphMode.PIECEWISE,
batch_descriptor=BatchDescriptor(num_tokens=1, )):
model(torch.randn(1).cuda())
input = torch.zeros(2).cuda()
reset_global_counter()
with set_forward_context(
None,
vllm_config=vllm_config,
cudagraph_runtime_mode=CUDAGraphMode.PIECEWISE,
batch_descriptor=BatchDescriptor(num_tokens=2, )):
output = model(input)
assert get_global_counter() == 2
assert torch.allclose(output.cpu(), torch.tensor([19.0, 19.0]))
@pytest.mark.parametrize("use_inductor", [True, False])
@torch.inference_mode()
def test_simple_piecewise_compile(use_inductor):
assert VLLM_USE_V1
_run_simple_model(
splitting_ops=["silly.attention"],
use_inductor_graph_partition=False,
use_inductor=use_inductor,
expected_num_piecewise_graphs_seen=5, # 2 * num_layers + 1
expected_num_piecewise_capturable_graphs_seen=3, # 1 + num_layers
expected_num_backend_compilations=
3, # num_piecewise_capturable_graphs_seen
expected_num_cudagraph_captured=
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
)
@torch.inference_mode()
@pytest.mark.parametrize("splitting_ops", [["silly.attention"], []])
def test_simple_inductor_graph_partition(splitting_ops):
assert VLLM_USE_V1
if not is_torch_equal_or_newer("2.9.0.dev"):
pytest.skip("inductor graph partition is only available "
"in PyTorch 2.9+")
_run_simple_model(
# inductor graph partition automatically resets splitting_ops
# to be an empty list
splitting_ops=splitting_ops,
use_inductor_graph_partition=True,
use_inductor=True,
expected_num_piecewise_graphs_seen=
1, # since not splitting at fx graph level
expected_num_piecewise_capturable_graphs_seen=
1, # since not splitting at fx graph level
expected_num_backend_compilations=
1, # since not splitting at fx graph level
expected_num_cudagraph_captured=
6, # inductor graph partition still captures 6
# graph, same as fx graph partition.
)