mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
2213 lines
67 KiB
Python
2213 lines
67 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import warnings
|
|
from collections.abc import Mapping
|
|
from typing import Literal, Optional
|
|
|
|
import pytest
|
|
from mistral_common.tokens.tokenizers.base import SpecialTokenPolicy
|
|
|
|
from vllm.assets.audio import AudioAsset
|
|
from vllm.assets.image import ImageAsset
|
|
from vllm.assets.video import VideoAsset
|
|
from vllm.config import ModelConfig
|
|
from vllm.entrypoints.chat_utils import (
|
|
_try_extract_ast,
|
|
apply_mistral_chat_template,
|
|
load_chat_template,
|
|
parse_chat_messages,
|
|
parse_chat_messages_futures,
|
|
resolve_chat_template_content_format,
|
|
resolve_chat_template_kwargs,
|
|
resolve_hf_chat_template,
|
|
)
|
|
from vllm.multimodal import MultiModalDataDict, MultiModalUUIDDict
|
|
from vllm.multimodal.utils import (
|
|
encode_audio_base64,
|
|
encode_image_base64,
|
|
encode_video_base64,
|
|
)
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
|
|
|
|
from ..models.registry import HF_EXAMPLE_MODELS
|
|
from ..utils import VLLM_PATH
|
|
|
|
EXAMPLES_DIR = VLLM_PATH / "examples"
|
|
|
|
PHI3V_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
|
|
ULTRAVOX_MODEL_ID = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
|
|
QWEN2AUDIO_MODEL_ID = "Qwen/Qwen2-Audio-7B-Instruct"
|
|
QWEN2VL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
|
|
QWEN25VL_MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
|
|
QWEN25OMNI_MODEL_ID = "Qwen/Qwen2.5-Omni-7B"
|
|
QWEN3_MODEL_ID = "Qwen/Qwen3-8B"
|
|
LLAMA_GUARD_MODEL_ID = "meta-llama/Llama-Guard-3-1B"
|
|
HERMES_MODEL_ID = "NousResearch/Hermes-3-Llama-3.1-8B"
|
|
MISTRAL_MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def phi3v_model_config():
|
|
return ModelConfig(
|
|
PHI3V_MODEL_ID,
|
|
runner="generate",
|
|
trust_remote_code=True,
|
|
limit_mm_per_prompt={
|
|
"image": 2,
|
|
},
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def phi3v_model_config_mm_interleaved():
|
|
return ModelConfig(
|
|
PHI3V_MODEL_ID,
|
|
runner="generate",
|
|
trust_remote_code=True,
|
|
interleave_mm_strings=True,
|
|
limit_mm_per_prompt={
|
|
"image": 2,
|
|
},
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def phi3v_tokenizer():
|
|
return get_tokenizer(PHI3V_MODEL_ID)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def qwen2_audio_model_config():
|
|
return ModelConfig(
|
|
QWEN2AUDIO_MODEL_ID,
|
|
runner="generate",
|
|
trust_remote_code=True,
|
|
limit_mm_per_prompt={
|
|
"audio": 1,
|
|
},
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def qwen2_audio_tokenizer():
|
|
return get_tokenizer(QWEN2AUDIO_MODEL_ID)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def qwen25omni_model_config_mm_interleaved():
|
|
return ModelConfig(
|
|
QWEN25OMNI_MODEL_ID,
|
|
runner="generate",
|
|
interleave_mm_strings=True,
|
|
limit_mm_per_prompt={
|
|
"image": 2,
|
|
"audio": 1,
|
|
"video": 1,
|
|
},
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def qwen25omni_tokenizer():
|
|
return get_tokenizer(QWEN25OMNI_MODEL_ID)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def mistral_model_config():
|
|
return ModelConfig(
|
|
MISTRAL_MODEL_ID,
|
|
runner="generate",
|
|
limit_mm_per_prompt={
|
|
"image": 2,
|
|
},
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def mistral_tokenizer():
|
|
return get_tokenizer(MISTRAL_MODEL_ID)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def image_url():
|
|
image = ImageAsset("cherry_blossom")
|
|
base64 = encode_image_base64(image.pil_image)
|
|
return f"data:image/jpeg;base64,{base64}"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def video_url():
|
|
video = VideoAsset("baby_reading", 1)
|
|
base64 = encode_video_base64(video.np_ndarrays)
|
|
return f"data:video/jpeg;base64,{base64}"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def audio_url():
|
|
audio = AudioAsset("mary_had_lamb")
|
|
base64 = encode_audio_base64(*audio.audio_and_sample_rate)
|
|
return f"data:audio/ogg;base64,{base64}"
|
|
|
|
|
|
def _assert_mm_data_is_image_input(
|
|
mm_data: Optional[MultiModalDataDict],
|
|
image_count: int,
|
|
skipped_image_indices: Optional[list] = None,
|
|
) -> None:
|
|
assert mm_data is not None
|
|
assert set(mm_data.keys()) == {"image"}
|
|
|
|
image_data = mm_data.get("image")
|
|
assert image_data is not None
|
|
|
|
assert isinstance(image_data, list) and len(image_data) == image_count
|
|
if skipped_image_indices is not None:
|
|
for i in skipped_image_indices:
|
|
assert image_data[i] is None
|
|
|
|
|
|
def _assert_mm_uuids(
|
|
mm_uuids: Optional[MultiModalUUIDDict],
|
|
media_count: int,
|
|
expected_uuids: list[Optional[str]],
|
|
modality: str = "image",
|
|
) -> None:
|
|
if len(expected_uuids) > 0:
|
|
assert mm_uuids is not None
|
|
assert modality in mm_uuids
|
|
|
|
image_uuids = mm_uuids.get(modality)
|
|
assert image_uuids is not None
|
|
|
|
assert isinstance(image_uuids, list) and len(image_uuids) == media_count
|
|
|
|
assert image_uuids == expected_uuids
|
|
else:
|
|
assert mm_uuids is None
|
|
|
|
|
|
ModalityType = Literal["image", "video", "audio"]
|
|
MultiModalDataCounts = Mapping[ModalityType, int]
|
|
|
|
|
|
def _assert_mm_data_inputs(
|
|
mm_data: Optional[MultiModalDataDict],
|
|
data_count: MultiModalDataCounts,
|
|
skipped_media_indices: Optional[dict[str, list]] = None, # modality -> list[int]
|
|
) -> None:
|
|
assert mm_data is not None
|
|
assert set(data_count.keys()) == (set(mm_data.keys()))
|
|
|
|
for modality, n in data_count.items():
|
|
modality_data = mm_data.get(modality)
|
|
assert modality_data is not None
|
|
assert isinstance(modality_data, list) and len(modality_data) == n
|
|
|
|
if skipped_media_indices is not None:
|
|
skipped_media_indices_for_modality = skipped_media_indices.get(modality)
|
|
assert skipped_media_indices_for_modality is not None
|
|
for i in skipped_media_indices_for_modality:
|
|
assert modality_data[i] is None
|
|
|
|
|
|
def test_parse_chat_messages_single_image(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{"role": "user", "content": "<|image_1|>\nWhat's in the image?"}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 1)
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[None])
|
|
|
|
|
|
def test_parse_chat_messages_single_image_with_uuid(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid = str(hash(image_url))
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url,
|
|
},
|
|
"uuid": image_uuid,
|
|
},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{"role": "user", "content": "<|image_1|>\nWhat's in the image?"}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 1)
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[image_uuid])
|
|
|
|
|
|
def test_parse_chat_messages_single_empty_image_with_uuid(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid = str(hash(image_url))
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": None,
|
|
"uuid": image_uuid,
|
|
},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{"role": "user", "content": "<|image_1|>\nWhat's in the image?"}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 1, skipped_image_indices=[0])
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[image_uuid])
|
|
|
|
|
|
def test_parse_chat_messages_single_image_with_bad_uuid_format(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid = str(hash(image_url))
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url,
|
|
"uuid": image_uuid,
|
|
},
|
|
"bad_uuid_key": image_uuid,
|
|
},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{"role": "user", "content": "<|image_1|>\nWhat's in the image?"}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 1)
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[None])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_images_with_uuids(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid1 = "my_uuid_1"
|
|
image_uuid2 = "my_uuid_2"
|
|
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url,
|
|
},
|
|
"uuid": image_uuid1,
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url,
|
|
},
|
|
"uuid": image_uuid2,
|
|
},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\n<|image_2|>\nWhat's in the image?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid1, image_uuid2])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_empty_images_with_uuids(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid1 = "my_uuid_1"
|
|
image_uuid2 = "my_uuid_2"
|
|
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": None,
|
|
"uuid": image_uuid1,
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": None,
|
|
"uuid": image_uuid2,
|
|
},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\n<|image_2|>\nWhat's in the image?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2, skipped_image_indices=[0, 1])
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid1, image_uuid2])
|
|
|
|
|
|
def test_parse_chat_messages_mixed_empty_images_with_uuids(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid1 = "my_uuid_1"
|
|
image_uuid2 = "my_uuid_2"
|
|
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url,
|
|
},
|
|
"uuid": image_uuid1,
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": None,
|
|
"uuid": image_uuid2,
|
|
},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\n<|image_2|>\nWhat's in the image?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2, skipped_image_indices=[1])
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid1, image_uuid2])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_single_image_with_uuid_async(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid = str(hash(image_url))
|
|
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": image_uuid,
|
|
},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{"role": "user", "content": "<|image_1|>\nWhat's in the image?"}
|
|
]
|
|
_assert_mm_data_is_image_input(await mm_future, 1)
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[image_uuid])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_empty_image_with_uuid_async(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid = str(hash(image_url))
|
|
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": None,
|
|
"uuid": image_uuid,
|
|
},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{"role": "user", "content": "<|image_1|>\nWhat's in the image?"}
|
|
]
|
|
_assert_mm_data_is_image_input(await mm_future, 1, skipped_image_indices=[0])
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[image_uuid])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_multiple_images_with_uuids_async(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid1 = "my_uuid_1"
|
|
image_uuid2 = "my_uuid_2"
|
|
|
|
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": image_uuid1,
|
|
},
|
|
{
|
|
"type": "image_pil",
|
|
"image_pil": ImageAsset("cherry_blossom").pil_image,
|
|
"uuid": image_uuid2,
|
|
},
|
|
{"type": "text", "text": "What's in these images?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\n<|image_2|>\nWhat's in these images?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(await mm_future, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid1, image_uuid2])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_multiple_empty_images_with_uuids_async(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid1 = "my_uuid_1"
|
|
image_uuid2 = "my_uuid_2"
|
|
|
|
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": None,
|
|
"uuid": image_uuid1,
|
|
},
|
|
{
|
|
"type": "image_pil",
|
|
"image_pil": None,
|
|
"uuid": image_uuid2,
|
|
},
|
|
{"type": "text", "text": "What's in these images?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\n<|image_2|>\nWhat's in these images?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(await mm_future, 2, skipped_image_indices=[0, 1])
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid1, image_uuid2])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_multiple_images_with_partial_uuids_async(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid2 = "my_uuid_2"
|
|
|
|
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
},
|
|
{
|
|
"type": "image_pil",
|
|
"image_pil": ImageAsset("cherry_blossom").pil_image,
|
|
"uuid": image_uuid2,
|
|
},
|
|
{"type": "text", "text": "What's in these images?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\n<|image_2|>\nWhat's in these images?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(await mm_future, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, image_uuid2])
|
|
|
|
|
|
def test_parse_chat_messages_empty_system(
|
|
mistral_model_config,
|
|
mistral_tokenizer,
|
|
):
|
|
# Test string format
|
|
conversation, _, _ = parse_chat_messages(
|
|
[
|
|
{"role": "system", "content": ""},
|
|
{
|
|
"role": "user",
|
|
"content": [{"type": "text", "text": "Who are you?"}],
|
|
},
|
|
],
|
|
mistral_model_config,
|
|
mistral_tokenizer,
|
|
content_format="string",
|
|
)
|
|
assert conversation == [
|
|
{"role": "system", "content": ""},
|
|
{"role": "user", "content": "Who are you?"},
|
|
]
|
|
|
|
# Test openai format
|
|
conversation, _, _ = parse_chat_messages(
|
|
[
|
|
{"role": "system", "content": ""},
|
|
{
|
|
"role": "user",
|
|
"content": [{"type": "text", "text": "Who are you?"}],
|
|
},
|
|
],
|
|
mistral_model_config,
|
|
mistral_tokenizer,
|
|
content_format="openai",
|
|
)
|
|
assert conversation == [
|
|
{"role": "system", "content": [{"type": "text", "text": ""}]},
|
|
{"role": "user", "content": [{"type": "text", "text": "Who are you?"}]},
|
|
]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_single_image_async(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "What's in the image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{"role": "user", "content": "<|image_1|>\nWhat's in the image?"}
|
|
]
|
|
_assert_mm_data_is_image_input(await mm_future, 1)
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[None])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_images(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{
|
|
"type": "image_pil",
|
|
"image_pil": ImageAsset("cherry_blossom").pil_image,
|
|
},
|
|
{"type": "text", "text": "What's in these images?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\n<|image_2|>\nWhat's in these images?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
|
|
|
|
|
|
def test_parse_chat_messages_empty_pil_image_with_uuid(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
):
|
|
uuid = "abcd"
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_pil", "image_pil": None, "uuid": uuid},
|
|
{"type": "text", "text": "What's in this image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\nWhat's in this image?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 1, skipped_image_indices=[0])
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[uuid])
|
|
|
|
|
|
def test_parse_chat_messages_empty_image_embeds_with_uuid(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
):
|
|
uuid = "abcd"
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_embeds", "image_embeds": None, "uuid": uuid},
|
|
{"type": "text", "text": "What's in this image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\nWhat's in this image?",
|
|
}
|
|
]
|
|
assert mm_data is not None
|
|
assert "image" in mm_data
|
|
assert mm_data["image"] is None
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[uuid])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_empty_image_embeds_with_uuid_async(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
):
|
|
uuid = "abcd"
|
|
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_embeds", "image_embeds": None, "uuid": uuid},
|
|
{"type": "text", "text": "What's in this image?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\nWhat's in this image?",
|
|
}
|
|
]
|
|
mm_data = await mm_future
|
|
assert mm_data is not None
|
|
assert "image" in mm_data
|
|
assert mm_data["image"] is None
|
|
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[uuid])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_multiple_images_async(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{
|
|
"type": "image_pil",
|
|
"image_pil": ImageAsset("cherry_blossom").pil_image,
|
|
},
|
|
{"type": "text", "text": "What's in these images?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\n<|image_2|>\nWhat's in these images?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(await mm_future, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
|
|
|
|
|
|
def test_parse_chat_messages_placeholder_already_in_prompt(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{
|
|
"type": "text",
|
|
"text": "What's in <|image_1|> and how does it compare to <|image_2|>?", # noqa: E501
|
|
},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "What's in <|image_1|> and how does it compare to <|image_2|>?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
|
|
|
|
|
|
def test_parse_chat_messages_placeholder_one_already_in_prompt(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{
|
|
"type": "text",
|
|
"text": "What's in <|image_1|> and how does it compare to "
|
|
"the other one?",
|
|
},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_2|>\nWhat's in <|image_1|> and how does it compare to "
|
|
"the other one?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_images_across_messages(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "What's in this image?"},
|
|
],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "What about this one?"},
|
|
],
|
|
},
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{"role": "user", "content": "<|image_1|>\nWhat's in this image?"},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{"role": "user", "content": "<|image_2|>\nWhat about this one?"},
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_images_with_uuids_across_messages(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid = str(hash(image_url))
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": image_uuid,
|
|
},
|
|
{"type": "text", "text": "What's in this image?"},
|
|
],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": image_uuid,
|
|
},
|
|
{"type": "text", "text": "What about this one?"},
|
|
],
|
|
},
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{"role": "user", "content": "<|image_1|>\nWhat's in this image?"},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{"role": "user", "content": "<|image_2|>\nWhat about this one?"},
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid, image_uuid])
|
|
|
|
|
|
def test_parse_chat_messages_context_text_format(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [{"type": "text", "text": "What's in this text?"}],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{"role": "user", "content": "What about this one?"},
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="openai",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": [{"type": "text", "text": "What's in this text?"}],
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": [{"type": "text", "text": "Some stuff."}],
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": [{"type": "text", "text": "What about this one?"}],
|
|
},
|
|
]
|
|
assert mm_data is None
|
|
assert mm_uuids is None
|
|
|
|
|
|
def test_parse_chat_messages_rejects_too_many_images_in_one_message(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings(
|
|
"ignore",
|
|
message="coroutine 'async_get_and_parse_image' was never awaited",
|
|
)
|
|
with pytest.raises(ValueError, match="At most"):
|
|
parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
},
|
|
{"type": "text", "text": "What's in these images?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
|
|
def test_parse_chat_messages_rejects_too_many_images_across_messages(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings(
|
|
"ignore",
|
|
message="coroutine 'async_get_and_parse_image' was never awaited",
|
|
)
|
|
with pytest.raises(ValueError, match="At most"):
|
|
parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
},
|
|
{"type": "text", "text": "What's in this image?"},
|
|
],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
},
|
|
{"type": "text", "text": "What about these two?"},
|
|
],
|
|
},
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
|
|
def test_parse_chat_messages_multiple_images_uncommon_input(
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
"What's in these images?",
|
|
{"image_url": image_url},
|
|
{"image_url": image_url},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "<|image_1|>\n<|image_2|>\nWhat's in these images?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_images_interleave(
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "I need you to compare this image",
|
|
},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "and this one"},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "Do they have differences?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501
|
|
"Do they have differences?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_multiple_images_interleave_async(
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "I need you to compare this image",
|
|
},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "and this one"},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "Do they have differences?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501
|
|
"Do they have differences?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(await mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_multiple_images_with_uuids_interleave_async(
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid = str(hash(image_url))
|
|
conversation, mm_data, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "I need you to compare this image",
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": image_uuid,
|
|
},
|
|
{"type": "text", "text": "and this one"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": image_uuid,
|
|
},
|
|
{"type": "text", "text": "Do they have differences?"},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501
|
|
"Do they have differences?",
|
|
}
|
|
]
|
|
_assert_mm_data_is_image_input(await mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid, image_uuid])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_images_multiple_messages_interleave(
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "Be accurate."},
|
|
],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
],
|
|
},
|
|
],
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|image_1|>\nBe accurate.",
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{"role": "user", "content": "What's on this image?\n<|image_2|>"},
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_images_with_uuids_multiple_messages_interleave(
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
image_uuid = str(hash(image_url))
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": image_uuid,
|
|
},
|
|
{"type": "text", "text": "Be accurate."},
|
|
],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": image_uuid,
|
|
},
|
|
],
|
|
},
|
|
],
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|image_1|>\nBe accurate.",
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{"role": "user", "content": "What's on this image?\n<|image_2|>"},
|
|
]
|
|
_assert_mm_data_is_image_input(mm_data, 2)
|
|
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid, image_uuid])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_modals_multiple_messages_interleave(
|
|
qwen25omni_model_config_mm_interleaved,
|
|
qwen25omni_tokenizer,
|
|
image_url,
|
|
video_url,
|
|
audio_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "Now listen to this audio"},
|
|
{"type": "audio_url", "audio_url": {"url": audio_url}},
|
|
],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "And what's in the video?"},
|
|
{"type": "video_url", "video_url": {"url": video_url}},
|
|
],
|
|
},
|
|
],
|
|
qwen25omni_model_config_mm_interleaved,
|
|
qwen25omni_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>"
|
|
"\nNow listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>",
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>"
|
|
"\nAnd what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>",
|
|
},
|
|
]
|
|
|
|
_assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1})
|
|
_assert_mm_uuids(mm_uuids, 2, modality="image", expected_uuids=[None, None])
|
|
_assert_mm_uuids(mm_uuids, 1, modality="video", expected_uuids=[None])
|
|
_assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=[None])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_modals_with_uuids_multiple_messages_interleave(
|
|
qwen25omni_model_config_mm_interleaved,
|
|
qwen25omni_tokenizer,
|
|
image_url,
|
|
video_url,
|
|
audio_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": "image_123",
|
|
},
|
|
{"type": "text", "text": "Now listen to this audio"},
|
|
{
|
|
"type": "audio_url",
|
|
"audio_url": {"url": audio_url},
|
|
"uuid": "audio_123",
|
|
},
|
|
],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": "image_123",
|
|
},
|
|
{"type": "text", "text": "And what's in the video?"},
|
|
{
|
|
"type": "video_url",
|
|
"video_url": {"url": video_url},
|
|
"uuid": "video_123",
|
|
},
|
|
],
|
|
},
|
|
],
|
|
qwen25omni_model_config_mm_interleaved,
|
|
qwen25omni_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>"
|
|
"\nNow listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>",
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>"
|
|
"\nAnd what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>",
|
|
},
|
|
]
|
|
|
|
_assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1})
|
|
_assert_mm_uuids(
|
|
mm_uuids, 2, modality="image", expected_uuids=["image_123", "image_123"]
|
|
)
|
|
_assert_mm_uuids(mm_uuids, 1, modality="video", expected_uuids=["video_123"])
|
|
_assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=["audio_123"])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_modals_with_uuids_multiple_empty_media_messages_interleave( # noqa: E501
|
|
qwen25omni_model_config_mm_interleaved,
|
|
qwen25omni_tokenizer,
|
|
image_url,
|
|
video_url,
|
|
audio_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": None,
|
|
"uuid": "image_123",
|
|
},
|
|
{"type": "text", "text": "Now listen to this audio"},
|
|
{
|
|
"type": "audio_url",
|
|
"audio_url": None,
|
|
"uuid": "audio_123",
|
|
},
|
|
],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": None,
|
|
"uuid": "image_123",
|
|
},
|
|
{"type": "text", "text": "And what's in the video?"},
|
|
{
|
|
"type": "video_url",
|
|
"video_url": None,
|
|
"uuid": "video_123",
|
|
},
|
|
],
|
|
},
|
|
],
|
|
qwen25omni_model_config_mm_interleaved,
|
|
qwen25omni_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>"
|
|
"\nNow listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>",
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>"
|
|
"\nAnd what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>",
|
|
},
|
|
]
|
|
|
|
_assert_mm_data_inputs(
|
|
mm_data,
|
|
{"image": 2, "video": 1, "audio": 1},
|
|
skipped_media_indices={"image": [0, 1], "video": [0], "audio": [0]},
|
|
)
|
|
_assert_mm_uuids(
|
|
mm_uuids, 2, modality="image", expected_uuids=["image_123", "image_123"]
|
|
)
|
|
_assert_mm_uuids(mm_uuids, 1, modality="video", expected_uuids=["video_123"])
|
|
_assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=["audio_123"])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_modals_with_partial_uuids_multiple_messages_interleave( # noqa: E501
|
|
qwen25omni_model_config_mm_interleaved,
|
|
qwen25omni_tokenizer,
|
|
image_url,
|
|
video_url,
|
|
audio_url,
|
|
):
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": image_url},
|
|
"uuid": "image_123",
|
|
},
|
|
{"type": "text", "text": "Now listen to this audio"},
|
|
{"type": "audio_url", "audio_url": {"url": audio_url}},
|
|
],
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's on this image?"},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "text", "text": "And what's in the video?"},
|
|
{
|
|
"type": "video_url",
|
|
"video_url": {"url": video_url},
|
|
"uuid": "video_123",
|
|
},
|
|
],
|
|
},
|
|
],
|
|
qwen25omni_model_config_mm_interleaved,
|
|
qwen25omni_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>"
|
|
"\nNow listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>",
|
|
},
|
|
{"role": "assistant", "content": "Some stuff."},
|
|
{
|
|
"role": "user",
|
|
"content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>"
|
|
"\nAnd what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>",
|
|
},
|
|
]
|
|
|
|
_assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1})
|
|
_assert_mm_uuids(mm_uuids, 2, modality="image", expected_uuids=["image_123", None])
|
|
_assert_mm_uuids(mm_uuids, 1, modality="video", expected_uuids=["video_123"])
|
|
_assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=[None])
|
|
|
|
|
|
def test_parse_chat_messages_multiple_images_interleave_with_placeholders(
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
image_url,
|
|
):
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=r"Found more '<|image_1|>' placeholders in input prompt "
|
|
"than actual multimodal data items.",
|
|
):
|
|
parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
{
|
|
"type": "text",
|
|
"text": "I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501
|
|
"Do they have differences?",
|
|
},
|
|
],
|
|
}
|
|
],
|
|
phi3v_model_config_mm_interleaved,
|
|
phi3v_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
QWEN2VL_MODEL_ID, # tokenizer.chat_template is of type str
|
|
HERMES_MODEL_ID, # tokenizer.chat_template is of type dict
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("use_tools", [True, False])
|
|
def test_resolve_hf_chat_template(sample_json_schema, model, use_tools):
|
|
"""checks that chat_template is a dict type for HF models."""
|
|
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
|
|
model_info.check_available_online(on_fail="skip")
|
|
|
|
model_config = ModelConfig(
|
|
model,
|
|
tokenizer=model_info.tokenizer or model,
|
|
tokenizer_mode=model_info.tokenizer_mode,
|
|
revision=model_info.revision,
|
|
trust_remote_code=model_info.trust_remote_code,
|
|
hf_overrides=model_info.hf_overrides,
|
|
skip_tokenizer_init=model_info.skip_tokenizer_init,
|
|
enforce_eager=model_info.enforce_eager,
|
|
dtype=model_info.dtype,
|
|
)
|
|
|
|
# Build the tokenizer
|
|
tokenizer = get_tokenizer(
|
|
model,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
)
|
|
|
|
tools = (
|
|
[
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "dummy_function_name",
|
|
"description": "This is a dummy function",
|
|
"parameters": sample_json_schema,
|
|
},
|
|
}
|
|
]
|
|
if use_tools
|
|
else None
|
|
)
|
|
|
|
# Test detecting the tokenizer's chat_template
|
|
chat_template = resolve_hf_chat_template(
|
|
tokenizer,
|
|
chat_template=None,
|
|
tools=tools,
|
|
model_config=model_config,
|
|
)
|
|
assert isinstance(chat_template, str)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expected_kwargs",
|
|
[
|
|
(
|
|
QWEN2VL_MODEL_ID,
|
|
{
|
|
"add_vision_id",
|
|
"add_generation_prompt",
|
|
"continue_final_message",
|
|
"tools",
|
|
},
|
|
),
|
|
(
|
|
QWEN3_MODEL_ID,
|
|
{
|
|
"enable_thinking",
|
|
"add_generation_prompt",
|
|
"continue_final_message",
|
|
"tools",
|
|
},
|
|
),
|
|
],
|
|
)
|
|
def test_resolve_hf_chat_template_kwargs(sample_json_schema, model, expected_kwargs):
|
|
"""checks that chat_template is a dict type for HF models."""
|
|
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
|
|
model_info.check_available_online(on_fail="skip")
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "dummy_function_name",
|
|
"description": "This is a dummy function",
|
|
"parameters": sample_json_schema,
|
|
},
|
|
}
|
|
]
|
|
|
|
chat_template_kwargs = {
|
|
# both unused
|
|
"unsed_kwargs_1": 123,
|
|
"unsed_kwargs_2": "abc",
|
|
# should not appear
|
|
"chat_template": "{% Hello world! %}",
|
|
# used by tokenizer
|
|
"continue_final_message": True,
|
|
"tools": tools,
|
|
# both used by Qwen2-VL and Qwen3
|
|
"add_generation_prompt": True,
|
|
# only used by Qwen2-VL
|
|
"add_vision_id": True,
|
|
# only used by Qwen3
|
|
"enable_thinking": True,
|
|
}
|
|
|
|
model_config = ModelConfig(
|
|
model,
|
|
tokenizer=model_info.tokenizer or model,
|
|
tokenizer_mode=model_info.tokenizer_mode,
|
|
revision=model_info.revision,
|
|
trust_remote_code=model_info.trust_remote_code,
|
|
hf_overrides=model_info.hf_overrides,
|
|
skip_tokenizer_init=model_info.skip_tokenizer_init,
|
|
enforce_eager=model_info.enforce_eager,
|
|
dtype=model_info.dtype,
|
|
)
|
|
|
|
# Build the tokenizer
|
|
tokenizer = get_tokenizer(
|
|
model,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
)
|
|
|
|
# Test detecting the tokenizer's chat_template
|
|
chat_template = resolve_hf_chat_template(
|
|
tokenizer,
|
|
chat_template=None,
|
|
tools=tools,
|
|
model_config=model_config,
|
|
)
|
|
resolved_chat_template_kwargs = resolve_chat_template_kwargs(
|
|
tokenizer,
|
|
chat_template=chat_template,
|
|
chat_template_kwargs=chat_template_kwargs,
|
|
)
|
|
assert set(resolved_chat_template_kwargs.keys()) == expected_kwargs
|
|
|
|
|
|
# NOTE: Qwen2-Audio default chat template is specially defined inside
|
|
# processor class instead of using `tokenizer_config.json`
|
|
@pytest.mark.parametrize(
|
|
("model", "expected_format"),
|
|
[
|
|
(PHI3V_MODEL_ID, "string"),
|
|
(QWEN2VL_MODEL_ID, "openai"),
|
|
(QWEN25VL_MODEL_ID, "openai"),
|
|
(ULTRAVOX_MODEL_ID, "string"),
|
|
(QWEN2AUDIO_MODEL_ID, "openai"),
|
|
(LLAMA_GUARD_MODEL_ID, "openai"),
|
|
],
|
|
)
|
|
def test_resolve_content_format_hf_defined(model, expected_format):
|
|
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
|
|
model_info.check_available_online(on_fail="skip")
|
|
|
|
model_config = ModelConfig(
|
|
model,
|
|
tokenizer=model_info.tokenizer or model,
|
|
tokenizer_mode=model_info.tokenizer_mode,
|
|
revision=model_info.revision,
|
|
trust_remote_code=model_info.trust_remote_code,
|
|
hf_overrides=model_info.hf_overrides,
|
|
skip_tokenizer_init=model_info.skip_tokenizer_init,
|
|
enforce_eager=model_info.enforce_eager,
|
|
dtype=model_info.dtype,
|
|
)
|
|
|
|
tokenizer = get_tokenizer(
|
|
model,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
)
|
|
|
|
# Test detecting the tokenizer's chat_template
|
|
chat_template = resolve_hf_chat_template(
|
|
tokenizer,
|
|
chat_template=None,
|
|
tools=None,
|
|
model_config=model_config,
|
|
)
|
|
assert isinstance(chat_template, str)
|
|
|
|
print("[TEXT]")
|
|
print(chat_template)
|
|
print("[AST]")
|
|
print(_try_extract_ast(chat_template))
|
|
|
|
resolved_format = resolve_chat_template_content_format(
|
|
None, # Test detecting the tokenizer's chat_template
|
|
None,
|
|
"auto",
|
|
tokenizer,
|
|
model_config=model_config,
|
|
)
|
|
|
|
assert resolved_format == expected_format
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("model", "expected_format"),
|
|
[
|
|
("Salesforce/blip2-opt-2.7b", "string"),
|
|
("facebook/chameleon-7b", "string"),
|
|
("deepseek-ai/deepseek-vl2-tiny", "string"),
|
|
("adept/fuyu-8b", "string"),
|
|
("google/paligemma-3b-mix-224", "string"),
|
|
("Qwen/Qwen-VL", "string"),
|
|
("Qwen/Qwen-VL-Chat", "string"),
|
|
],
|
|
)
|
|
def test_resolve_content_format_fallbacks(model, expected_format):
|
|
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
|
|
model_info.check_available_online(on_fail="skip")
|
|
|
|
model_config = ModelConfig(
|
|
model,
|
|
tokenizer=model_info.tokenizer or model,
|
|
tokenizer_mode=model_info.tokenizer_mode,
|
|
revision=model_info.revision,
|
|
trust_remote_code=model_info.trust_remote_code,
|
|
hf_overrides=model_info.hf_overrides,
|
|
skip_tokenizer_init=model_info.skip_tokenizer_init,
|
|
enforce_eager=model_info.enforce_eager,
|
|
dtype=model_info.dtype,
|
|
)
|
|
|
|
tokenizer = get_tokenizer(
|
|
model_config.tokenizer,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
)
|
|
|
|
# Test detecting the tokenizer's chat_template
|
|
chat_template = resolve_hf_chat_template(
|
|
tokenizer,
|
|
chat_template=None,
|
|
tools=None,
|
|
model_config=model_config,
|
|
)
|
|
assert isinstance(chat_template, str)
|
|
|
|
print("[TEXT]")
|
|
print(chat_template)
|
|
print("[AST]")
|
|
print(_try_extract_ast(chat_template))
|
|
|
|
resolved_format = resolve_chat_template_content_format(
|
|
None, # Test detecting the tokenizer's chat_template
|
|
None,
|
|
"auto",
|
|
tokenizer,
|
|
model_config=model_config,
|
|
)
|
|
|
|
assert resolved_format == expected_format
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("template_path", "expected_format"),
|
|
[
|
|
("template_alpaca.jinja", "string"),
|
|
("template_baichuan.jinja", "string"),
|
|
("template_chatglm.jinja", "string"),
|
|
("template_chatglm2.jinja", "string"),
|
|
("template_chatml.jinja", "string"),
|
|
("template_dse_qwen2_vl.jinja", "openai"),
|
|
("template_falcon_180b.jinja", "string"),
|
|
("template_falcon.jinja", "string"),
|
|
("template_inkbot.jinja", "string"),
|
|
("template_teleflm.jinja", "string"),
|
|
("template_vlm2vec_phi3v.jinja", "openai"),
|
|
("template_vlm2vec_qwen2vl.jinja", "openai"),
|
|
("tool_chat_template_granite_20b_fc.jinja", "string"),
|
|
("tool_chat_template_hermes.jinja", "string"),
|
|
("tool_chat_template_internlm2_tool.jinja", "string"),
|
|
("tool_chat_template_llama3.1_json.jinja", "openai"),
|
|
("tool_chat_template_llama3.2_json.jinja", "openai"),
|
|
("tool_chat_template_mistral_parallel.jinja", "string"),
|
|
("tool_chat_template_mistral.jinja", "string"),
|
|
],
|
|
)
|
|
def test_resolve_content_format_examples(template_path, expected_format):
|
|
model_config = ModelConfig(
|
|
PHI3V_MODEL_ID, # Dummy
|
|
tokenizer=PHI3V_MODEL_ID, # Dummy
|
|
trust_remote_code=True,
|
|
)
|
|
|
|
dummy_tokenizer = get_tokenizer(
|
|
PHI3V_MODEL_ID, # Dummy
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
)
|
|
dummy_tokenizer.chat_template = None
|
|
|
|
chat_template = load_chat_template(EXAMPLES_DIR / template_path)
|
|
assert isinstance(chat_template, str)
|
|
|
|
print("[TEXT]")
|
|
print(chat_template)
|
|
print("[AST]")
|
|
print(_try_extract_ast(chat_template))
|
|
|
|
resolved_format = resolve_chat_template_content_format(
|
|
chat_template,
|
|
None,
|
|
"auto",
|
|
dummy_tokenizer,
|
|
model_config=model_config,
|
|
)
|
|
|
|
assert resolved_format == expected_format
|
|
|
|
|
|
def test_parse_chat_messages_include_thinking_chunk(
|
|
mistral_model_config, mistral_tokenizer
|
|
):
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": [
|
|
{"type": "text", "text": "You are a helpful assistant."},
|
|
{
|
|
"type": "thinking",
|
|
"closed": True,
|
|
"thinking": "Only return the answer when you are confident.",
|
|
},
|
|
],
|
|
},
|
|
{"role": "user", "content": "What is 2+2?"},
|
|
{
|
|
"role": "assistant",
|
|
"content": [
|
|
{"type": "text", "text": "Let me think about it."},
|
|
{"type": "thinking", "closed": True, "thinking": "2+2 = 4"},
|
|
{
|
|
"type": "text",
|
|
"text": "The answer is 4.",
|
|
},
|
|
],
|
|
},
|
|
]
|
|
|
|
conversation_with_thinking, _, _ = parse_chat_messages(
|
|
messages,
|
|
mistral_model_config,
|
|
mistral_tokenizer,
|
|
content_format="openai",
|
|
)
|
|
|
|
expected_conversation = [
|
|
{
|
|
"role": "system",
|
|
"content": [
|
|
{"type": "text", "text": "You are a helpful assistant."},
|
|
{
|
|
"type": "text",
|
|
"text": "Only return the answer when you are confident.",
|
|
},
|
|
],
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": [{"type": "text", "text": "What is 2+2?"}],
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": [
|
|
{"type": "text", "text": "Let me think about it."},
|
|
{"type": "text", "text": "2+2 = 4"},
|
|
{"type": "text", "text": "The answer is 4."},
|
|
],
|
|
},
|
|
]
|
|
|
|
assert conversation_with_thinking == expected_conversation
|
|
|
|
|
|
def test_apply_mistral_chat_template_thinking_chunk():
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": [
|
|
{"type": "text", "text": "You are a helpful assistant."},
|
|
{
|
|
"type": "thinking",
|
|
"closed": True,
|
|
"thinking": "Only return the answer when you are confident.",
|
|
},
|
|
],
|
|
},
|
|
{"role": "user", "content": "What is 2+2?"},
|
|
{
|
|
"role": "assistant",
|
|
"content": [
|
|
{"type": "text", "text": "Let me think about it."},
|
|
{"type": "thinking", "closed": True, "thinking": "2+2 = 4"},
|
|
{
|
|
"type": "text",
|
|
"text": "The answer is 4.",
|
|
},
|
|
],
|
|
},
|
|
{"role": "user", "content": "Thanks, what is 3+3?"},
|
|
]
|
|
mistral_tokenizer = MistralTokenizer.from_pretrained(
|
|
"mistralai/Magistral-Small-2509"
|
|
)
|
|
|
|
tokens_ids = apply_mistral_chat_template(
|
|
mistral_tokenizer, messages, chat_template=None, tools=None
|
|
)
|
|
|
|
string_tokens = mistral_tokenizer.mistral.decode(
|
|
tokens_ids, special_token_policy=SpecialTokenPolicy.KEEP
|
|
)
|
|
|
|
expected_tokens = (
|
|
r"<s>[SYSTEM_PROMPT]You are a helpful assistant.[THINK]Only return the"
|
|
r" answer when you are confident.[/THINK][/SYSTEM_PROMPT]"
|
|
r"[INST]What is 2+2?[/INST]"
|
|
r"Let me think about it.[THINK]2+2 = 4[/THINK]The answer is 4.</s>"
|
|
r"[INST]Thanks, what is 3+3?[/INST]"
|
|
)
|
|
|
|
assert string_tokens == expected_tokens
|
|
|
|
|
|
def test_parse_chat_messages_single_empty_audio_with_uuid(
|
|
qwen2_audio_model_config,
|
|
qwen2_audio_tokenizer,
|
|
):
|
|
audio_uuid = "abcd"
|
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "input_audio",
|
|
"input_audio": {},
|
|
"uuid": audio_uuid,
|
|
},
|
|
{"type": "text", "text": "What does the audio say?"},
|
|
],
|
|
}
|
|
],
|
|
qwen2_audio_model_config,
|
|
qwen2_audio_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "Audio 1: <|audio_bos|><|AUDIO|><|audio_eos|>\nWhat does the "
|
|
"audio say?",
|
|
}
|
|
]
|
|
_assert_mm_data_inputs(mm_data, {"audio": 1})
|
|
_assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=[audio_uuid])
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_parse_chat_messages_single_empty_audio_with_uuid_async(
|
|
qwen2_audio_model_config,
|
|
qwen2_audio_tokenizer,
|
|
):
|
|
audio_uuid = "abcd"
|
|
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "input_audio",
|
|
"input_audio": {},
|
|
"uuid": audio_uuid,
|
|
},
|
|
{"type": "text", "text": "What does the audio say?"},
|
|
],
|
|
}
|
|
],
|
|
qwen2_audio_model_config,
|
|
qwen2_audio_tokenizer,
|
|
content_format="string",
|
|
)
|
|
|
|
assert conversation == [
|
|
{
|
|
"role": "user",
|
|
"content": "Audio 1: <|audio_bos|><|AUDIO|><|audio_eos|>\nWhat does the "
|
|
"audio say?",
|
|
}
|
|
]
|
|
_assert_mm_data_inputs(await mm_future, {"audio": 1})
|
|
_assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=[audio_uuid])
|