Files
vllm/vllm/worker/hpu_worker.py
2025-04-26 05:55:14 -07:00

484 lines
21 KiB
Python

# SPDX-License-Identifier: Apache-2.0
###############################################################################
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company
###############################################################################
import contextlib
import gc
import os
from typing import List, Optional, Set, Tuple, Type
import habana_frameworks.torch as htorch # noqa:F401
import torch
import torch.distributed
from vllm_hpu_extension.profiler import HabanaMemoryProfiler, format_bytes
import vllm.envs as envs
from vllm.config import ParallelConfig, VllmConfig
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.model_executor import set_random_seed
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sequence import ExecuteModelRequest
from vllm.utils import bind_kv_cache
from vllm.worker.cache_engine import CacheEngine
from vllm.worker.hpu_model_runner import HPUModelRunner
from vllm.worker.model_runner_base import ModelRunnerBase
from vllm.worker.worker_base import (LocalOrDistributedWorkerBase, WorkerBase,
WorkerInput)
logger = init_logger(__name__)
class HPUWorker(LocalOrDistributedWorkerBase):
"""A worker class that executes (a partition of) the model on a HPU.
Each worker is associated with a single HPU. The worker is responsible for
maintaining the KV cache and executing the model on the HPU. In case of
distributed inference, each worker is assigned a partition of the model.
"""
def __init__(
self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
model_runner_cls: Optional[Type[ModelRunnerBase]] = None,
) -> None:
WorkerBase.__init__(self, vllm_config=vllm_config)
self.parallel_config.rank = rank
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.is_driver_worker = is_driver_worker
if self.is_driver_worker:
assert self.rank == 0, "The driver worker must have rank 0."
if self.model_config.trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils import init_cached_hf_modules
init_cached_hf_modules()
self.model_runner: HPUModelRunner = HPUModelRunner(
vllm_config=vllm_config, is_driver_worker=is_driver_worker)
# Uninitialized cache engine. Will be initialized by
# initialize_cache.
self.cache_engine: List[HPUCacheEngine]
# Initialize gpu_cache as pooling models don't initialize kv_caches
self.hpu_cache: Optional[List[List[torch.Tensor]]] = None
# Torch profiler. Enabled and configured through env vars:
# VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
if envs.VLLM_TORCH_PROFILER_DIR:
torch_profiler_trace_dir = envs.VLLM_TORCH_PROFILER_DIR
logger.info("Profiling enabled. Traces will be saved to: %s",
torch_profiler_trace_dir)
self.profiler = torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.HPU,
],
with_stack=True,
on_trace_ready=torch.profiler.tensorboard_trace_handler(
torch_profiler_trace_dir, use_gzip=True))
else:
self.profiler = None
def start_profile(self):
if self.profiler is None:
raise RuntimeError("Profiler is not enabled.")
self.profiler.start()
def stop_profile(self):
if self.profiler is None:
raise RuntimeError("Profiler is not enabled.")
self.profiler.stop()
def _set_env_vars(self):
local_rank = self.local_rank
if self.parallel_config.world_size == 1:
local_rank = -1
import os
os.environ["LOCAL_RANK"] = str(local_rank)
os.environ["ID"] = str(local_rank)
os.environ["WORLD_SIZE"] = str(self.parallel_config.world_size)
os.environ["RANK"] = str(self.rank)
def init_device(self) -> None:
if self.device_config.device.type == "hpu":
self.device = torch.device("hpu")
torch.hpu.set_device(self.device)
else:
raise RuntimeError(
f"Not support device type: {self.device_config.device}")
# Initialize the distributed environment.
if self.model_config.quantization == 'inc':
self._set_env_vars()
init_worker_distributed_environment(self.parallel_config, self.rank,
self.distributed_init_method,
self.local_rank)
# Set random seed.
set_random_seed(self.model_config.seed)
def load_model(self):
self.model_runner.load_model()
def execute_model(
self,
execute_model_req: Optional[ExecuteModelRequest] = None,
) -> Optional[List[SamplerOutput]]:
# VLLM_HPU_LOG_STEP_GRAPH_COMPILATION - will log graph compilations per engine step, only when there was any - highly recommended to use alongside PT_HPU_METRICS_GC_DETAILS! # noqa:E501
# VLLM_HPU_LOG_STEP_GRAPH_COMPILATION_ALL - will log graph compilations per engine step, always, even if there were none # noqa:E501
# VLLM_HPU_LOG_STEP_CPU_FALLBACKS - will log cpu fallbacks per engine step, only when there was any # noqa:E501
# VLLM_HPU_LOG_STEP_CPU_FALLBACKS_ALL - will log cpu fallbacks per engine step, always, even if there were none # noqa:E501
log_graph_compilation_all = os.environ.get(
'VLLM_HPU_LOG_STEP_GRAPH_COMPILATION_ALL', '0') != '0'
log_graph_compilation = os.environ.get(
'VLLM_HPU_LOG_STEP_GRAPH_COMPILATION',
'0') != '0' or log_graph_compilation_all
log_cpu_fallbacks_all = os.environ.get(
'VLLM_HPU_LOG_STEP_CPU_FALLBACKS_ALL', '0') != '0'
log_cpu_fallbacks = os.environ.get('VLLM_HPU_LOG_STEP_CPU_FALLBACKS',
'0') != '0' or log_cpu_fallbacks_all
if (log_graph_compilation or log_cpu_fallbacks) and \
execute_model_req is not None:
from habana_frameworks.torch.hpu.metrics import metric_localcontext
seq_group_metadata_list = execute_model_req.seq_group_metadata_list
is_prompt = any([
seq_group_metadata.is_prompt
for seq_group_metadata in seq_group_metadata_list
])
max_context_len = max([
max([
len(v.prompt_token_ids) + len(v.output_token_ids)
for v in seq_group_metadata.seq_data.values()
]) for seq_group_metadata in seq_group_metadata_list
]) # whoa, that's some spicy stuff right here
max_num_blocks = (
(max_context_len - 1) // self.cache_config.block_size) + 1
input_stats = (f'is_prompt: {is_prompt}, '
f'num_seqs: {len(seq_group_metadata_list)}, '
f'max_context_len: {max_context_len}, '
f'max_num_blocks {max_num_blocks}')
gc_ctx = metric_localcontext(
"graph_compilation"
) if log_graph_compilation else contextlib.nullcontext()
cpu_fallback_ctx = metric_localcontext(
"cpu_fallback"
) if log_cpu_fallbacks else contextlib.nullcontext()
with gc_ctx as gc_local_metric, \
cpu_fallback_ctx as cpu_fallback_local_metric:
output = LocalOrDistributedWorkerBase.execute_model(
self, execute_model_req)
if (log_graph_compilation and gc_local_metric.stats()[0][1]
> 0) or log_graph_compilation_all:
msg = ("VLLM_HPU_STEP_GRAPH_COMPILATION: "
f"{gc_local_metric.stats()}, {input_stats}")
logger.warning(msg)
if (log_cpu_fallbacks and cpu_fallback_local_metric.stats()[0][1]
> 0) or log_cpu_fallbacks_all:
msg = ("VLLM_HPU_STEP_CPU_FALLBACK: "
f"{cpu_fallback_local_metric.stats()}, {input_stats}")
logger.warning(msg)
return output
output = LocalOrDistributedWorkerBase.execute_model(
self, execute_model_req)
return output
@torch.inference_mode()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Profiles the peak memory usage of the model to determine how many
KV blocks may be allocated without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
.. tip::
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
with HabanaMemoryProfiler() as m:
self.model_runner.profile_run()
torch.hpu.synchronize()
msg = ("Model profiling run "
f"took {m.get_summary_string()}")
logger.info(msg)
# At this point we should've allocated the maximum workspace for all
# recipes we will use the extra memory for graphs/blocks
free_hpu_memory = torch.hpu.mem_get_info()[0]
cache_block_size = self.get_cache_block_size_bytes()
graph_reserved_mem = (float(
os.environ.get('VLLM_GRAPH_RESERVED_MEM', '0.1'))
if not self.model_config.enforce_eager else 0)
graph_headroom = 1 - graph_reserved_mem
available_hpu_memory = free_hpu_memory * \
self.cache_config.gpu_memory_utilization
hpu_memory_margin = free_hpu_memory * (
1 - self.cache_config.gpu_memory_utilization)
self.model_runner.mem_margin = hpu_memory_margin
cache_size_bytes = available_hpu_memory * graph_headroom
graph_headroom_bytes = available_hpu_memory * (1 - graph_headroom)
msg = (
f"Free device memory: {format_bytes(free_hpu_memory)}, "
f"{format_bytes(available_hpu_memory)} usable "
f"(gpu_memory_utilization={self.cache_config.gpu_memory_utilization}),"
f" {format_bytes(graph_headroom_bytes)} reserved for HPUGraphs "
f"(VLLM_GRAPH_RESERVED_MEM={graph_reserved_mem}), "
f"{format_bytes(cache_size_bytes)} reserved for KV cache")
logger.info(msg)
num_hpu_blocks = int(cache_size_bytes // cache_block_size)
num_cpu_blocks = int(self.cache_config.swap_space_bytes //
cache_block_size)
num_hpu_blocks = max(num_hpu_blocks, 0)
num_cpu_blocks = max(num_cpu_blocks, 0)
self.model_runner.bucketing_ctx.num_hpu_blocks = num_hpu_blocks
if self.model_runner.lora_manager:
self.model_runner.remove_all_loras()
gc.collect()
return num_hpu_blocks, num_cpu_blocks
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Allocate GPU and CPU KV cache with the specified number of blocks.
This also warms up the model, which may record CUDA graphs.
"""
raise_if_cache_size_invalid(
num_gpu_blocks, self.cache_config.block_size,
self.model_config.max_model_len,
self.parallel_config.pipeline_parallel_size)
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
with HabanaMemoryProfiler() as m:
self._init_cache_engine()
torch.hpu.synchronize()
msg = ("Initializing cache engine "
f"took {m.get_summary_string()}")
logger.info(msg)
self._warm_up_model()
def _init_cache_engine(self):
assert self.cache_config.num_gpu_blocks is not None
self.cache_engine = [
HPUCacheEngine(self.cache_config, self.model_config,
self.parallel_config, self.device_config)
for _ in range(self.parallel_config.pipeline_parallel_size)
]
self.hpu_cache = [
self.cache_engine[ve].gpu_cache
for ve in range(self.parallel_config.pipeline_parallel_size)
]
bind_kv_cache(self.compilation_config.static_forward_context,
self.hpu_cache)
def _warm_up_model(self) -> None:
# NOTE(kzawora): We should use virtual engine index here
# for pipeline parallelism. Using 0 for now.
assert self.hpu_cache is not None
self.model_runner.warmup_model(self.hpu_cache[0])
# Reset the seed to ensure that the random state is not affected by
# the model initialization and profiling.
set_random_seed(self.model_config.seed)
def finish_measurements(self):
self.model_runner.finish_measurements()
@property
def do_metadata_broadcast(self) -> bool:
return self.parallel_config.tensor_parallel_size > 1
@property
def kv_cache(self) -> Optional[List[List[torch.Tensor]]]:
return self.hpu_cache
@torch.inference_mode()
def prepare_worker_input(
self, execute_model_req: ExecuteModelRequest) -> WorkerInput:
virtual_engine = execute_model_req.virtual_engine
num_seq_groups = len(execute_model_req.seq_group_metadata_list)
# `blocks_to_swap_in` and `blocks_to_swap_out` are cpu tensors.
# they contain parameters to launch cudamemcpyasync.
blocks_to_swap_in = torch.tensor(execute_model_req.blocks_to_swap_in,
device="cpu",
dtype=torch.int64).view(-1, 2)
blocks_to_swap_out = torch.tensor(execute_model_req.blocks_to_swap_out,
device="cpu",
dtype=torch.int64).view(-1, 2)
# `blocks_to_copy` is a gpu tensor. The src and tgt of
# blocks to copy are in the same device, and `blocks_to_copy`
# can be used directly within cuda kernels.
blocks_to_copy = torch.tensor(execute_model_req.blocks_to_copy,
device=self.device,
dtype=torch.int64).view(-1, 2)
return WorkerInput(
num_seq_groups=num_seq_groups,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
virtual_engine=virtual_engine,
)
@torch.inference_mode()
def execute_worker(self, worker_input: WorkerInput) -> None:
virtual_engine = worker_input.virtual_engine
# Issue cache operations.
if (worker_input.blocks_to_swap_in is not None
and worker_input.blocks_to_swap_in.numel() > 0):
self.cache_engine[virtual_engine].swap_in(
worker_input.blocks_to_swap_in)
if (worker_input.blocks_to_swap_out is not None
and worker_input.blocks_to_swap_out.numel() > 0):
self.cache_engine[virtual_engine].swap_out(
worker_input.blocks_to_swap_out)
if (worker_input.blocks_to_copy is not None
and worker_input.blocks_to_copy.numel() > 0):
self.cache_engine[virtual_engine].copy(worker_input.blocks_to_copy)
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.model_runner.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
return self.model_runner.remove_lora(lora_id)
def pin_lora(self, lora_id: int) -> bool:
return self.model_runner.pin_lora(lora_id)
def list_loras(self) -> Set[int]:
return self.model_runner.list_loras()
def add_prompt_adapter(
self, prompt_adapter_request: PromptAdapterRequest) -> bool:
raise NotImplementedError(
"Prompt Adapter is not implemented for HPU backend.")
def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
raise NotImplementedError(
"Prompt Adapter is not implemented for HPU backend.")
def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
raise NotImplementedError(
"Prompt Adapter is not implemented for HPU backend.")
def list_prompt_adapters(self) -> Set[int]:
raise NotImplementedError(
"Prompt Adapter is not implemented for HPU backend.")
def shutdown_inc(self):
self.model_runner.shutdown_inc()
@property
def max_model_len(self) -> int:
return self.model_config.max_model_len
@property
def vocab_size(self) -> int:
return self.model_runner.vocab_size
def get_cache_block_size_bytes(self) -> int:
"""Get the size of the KV cache block size in bytes.
"""
return HPUCacheEngine.get_cache_block_size(self.cache_config,
self.model_config,
self.parallel_config)
def init_worker_distributed_environment(
parallel_config: ParallelConfig,
rank: int,
distributed_init_method: Optional[str] = None,
local_rank: int = -1,
) -> None:
"""Initialize the distributed environment."""
init_distributed_environment(parallel_config.world_size,
rank,
distributed_init_method,
local_rank,
backend='hccl')
ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
parallel_config.pipeline_parallel_size)
if torch.distributed.is_initialized():
torch_world_size = torch.distributed.get_world_size()
if torch_world_size != parallel_config.world_size:
raise RuntimeError(
"torch.distributed is already initialized but the torch world "
"size does not match parallel_config.world_size "
f"({torch_world_size} vs. {parallel_config.world_size}).")
elif not distributed_init_method:
raise ValueError(
"distributed_init_method must be set if torch.distributed "
"is not already initialized")
else:
torch.distributed.init_process_group(
backend="hccl",
world_size=parallel_config.world_size,
rank=rank,
init_method=distributed_init_method,
)
# A small all_reduce for warmup & checking conformance.
dummy_tensor_hpu = torch.ones(1).to('hpu')
torch.distributed.all_reduce(dummy_tensor_hpu)
assert dummy_tensor_hpu.item() == parallel_config.world_size
ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
parallel_config.pipeline_parallel_size)
def raise_if_cache_size_invalid(num_gpu_blocks, block_size, max_model_len,
pipeline_parallel_size) -> None:
if num_gpu_blocks <= 0:
raise ValueError("No available memory for the cache blocks. "
"Try increasing `gpu_memory_utilization` when "
"initializing the engine.")
max_seq_len = block_size * (num_gpu_blocks // pipeline_parallel_size)
if max_model_len > max_seq_len:
raise ValueError(
f"The model's max seq len ({max_model_len}) "
"is larger than the maximum number of tokens that can be "
f"stored in KV cache ({max_seq_len}). Try increasing "
"`gpu_memory_utilization` or decreasing `max_model_len` when "
"initializing the engine.")
class HPUCacheEngine(CacheEngine):
def _allocate_kv_cache(
self,
num_blocks: int,
device: str,
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
"""Allocates KV cache on the specified device."""
kv_cache_shape = self.attn_backend.get_kv_cache_shape(
num_blocks, self.block_size, self.num_kv_heads, self.head_size)
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]] = []
for _ in range(self.num_attention_layers):
key_cache = torch.zeros(kv_cache_shape,
dtype=self.dtype,
device=device)
value_cache = torch.zeros(kv_cache_shape,
dtype=self.dtype,
device=device)
kv_layer = (key_cache, value_cache)
kv_cache.append(kv_layer)
return kv_cache