Files
vllm/tests/compile/test_sequence_parallelism.py
2025-10-14 18:38:59 +00:00

334 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
import vllm.envs as envs
from vllm.compilation.fix_functionalization import FixFunctionalizationPass
from vllm.compilation.fusion import RMSNormQuantFusionPass
from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe, is_func
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.compilation.sequence_parallelism import SequenceParallelismPass
from vllm.compilation.vllm_inductor_pass import VllmInductorPass
from vllm.config import (
CompilationConfig,
DeviceConfig,
ModelConfig,
PassConfig,
VllmConfig,
)
from vllm.distributed import tensor_model_parallel_all_reduce
from vllm.distributed.parallel_state import (
init_distributed_environment,
initialize_model_parallel,
)
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization.utils.w8a8_utils import Fp8LinearOp
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables
from ..utils import multi_gpu_test
from .backend import TestBackend
FP8_DTYPE = current_platform.fp8_dtype()
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
class TestModel(torch.nn.Module):
def __init__(
self, hidden_size=16, intermediate_size=32, vllm_config: VllmConfig = None
):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = torch.nn.Parameter(
torch.empty((intermediate_size, hidden_size))
)
self.norm = RMSNorm(intermediate_size, 1e-05)
# Initialize weights
torch.nn.init.normal_(self.gate_proj, std=0.02)
def forward(self, hidden_states, residual):
"""
Forward pass implementing the operations in the FX graph
Args:
hidden_states: Input tensor
residual: Residual tensor from previous layer
Returns:
Tuple containing the output tensor
"""
# Reshape input
view = hidden_states.reshape(-1, self.hidden_size)
# matrix multiplication
permute = self.gate_proj.permute(1, 0)
mm = torch.mm(view, permute)
# Tensor parallel all-reduce
all_reduce = tensor_model_parallel_all_reduce(mm)
# layer normalization
norm_output, residual_output = self.norm(all_reduce, residual)
return norm_output, residual_output
def ops_in_model_before(self):
return [torch.ops.vllm.all_reduce.default]
def ops_in_model_after(self):
return [
torch.ops.vllm.reduce_scatter.default,
torch.ops.vllm.all_gather.default,
]
def ops_in_model(self):
return [torch.ops._C.fused_add_rms_norm.default]
class TestQuantModel(torch.nn.Module):
def __init__(
self, hidden_size=16, intermediate_size=32, vllm_config: VllmConfig = None
):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.vllm_config = vllm_config
self.gate_proj = torch.nn.Parameter(
torch.empty((intermediate_size, hidden_size)), requires_grad=False
)
self.norm = RMSNorm(intermediate_size, 1e-05)
# Initialize weights
torch.nn.init.normal_(self.gate_proj, std=0.02)
self.fp8_linear = Fp8LinearOp(act_quant_static=True)
self.scale = torch.rand(1, dtype=torch.float32)
# Create a weight that is compatible with torch._scaled_mm,
# which expects a column-major layout.
self.w = torch.rand(hidden_size, intermediate_size).to(dtype=FP8_DTYPE).t()
self.wscale = torch.rand(1, dtype=torch.float32)
def forward(self, hidden_states, residual):
"""
Forward pass implementing the operations in the FX graph
Args:
hidden_states: Input tensor
residual: Residual tensor from previous layer
Returns:
Tuple containing the output tensor
"""
# Reshape input
view = hidden_states.reshape(-1, self.hidden_size)
# matrix multiplication
permute = self.gate_proj.permute(1, 0)
mm = torch.mm(view, permute)
# Tensor parallel all-reduce
all_reduce = tensor_model_parallel_all_reduce(mm)
# layer normalization
norm_output, residual_output = self.norm(all_reduce, residual)
# scaled_mm with static input quantization
fp8_linear_result = self.fp8_linear.apply(
norm_output,
self.w,
self.wscale,
input_scale=self.scale.to(norm_output.device),
)
return fp8_linear_result, residual_output
def ops_in_model_before(self):
ops_to_remove = [torch.ops.vllm.all_reduce.default] # Always removed by SP
# The following are only removed if fusion happens
if (
self.vllm_config
and self.vllm_config.compilation_config.pass_config.enable_fusion
):
ops_to_remove.extend(
[
torch.ops._C.fused_add_rms_norm.default,
torch.ops._C.static_scaled_fp8_quant.default,
]
)
return ops_to_remove
def ops_in_model_after(self):
ops_to_add = [
torch.ops.vllm.reduce_scatter.default,
torch.ops.vllm.all_gather.default,
]
# The following is only added if fusion happens
if (
self.vllm_config
and self.vllm_config.compilation_config.pass_config.enable_fusion
):
ops_to_add.append(torch.ops._C.fused_add_rms_norm_static_fp8_quant.default)
return ops_to_add
def ops_in_model(self):
if (
self.vllm_config
and self.vllm_config.compilation_config.pass_config.enable_fusion
):
# If fusion happens, the fused op is the one
# we check for (de)functionalization
return [torch.ops._C.fused_add_rms_norm_static_fp8_quant.default]
else:
# If no fusion, the original ops are checked
return [
torch.ops._C.fused_add_rms_norm.default,
# TODO functionalization pass does not handle this yet
# torch.ops._C.static_scaled_fp8_quant.default,
]
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize("test_model_cls", [TestModel, TestQuantModel])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("seq_len", [16])
@pytest.mark.parametrize("hidden_size", [16])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("enable_fusion", [True, False])
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda"], reason="Only test on CUDA")
def test_sequence_parallelism_pass(
test_model_cls: type[torch.nn.Module],
batch_size: int,
seq_len: int,
hidden_size: int,
dtype: torch.dtype,
enable_fusion: bool,
):
num_processes = 2
def run_torch_spawn(fn, nprocs):
# need to use torch.mp.spawn otherwise will have problems with
# torch.distributed and cuda
torch.multiprocessing.spawn(
fn,
args=(
num_processes,
test_model_cls,
batch_size,
seq_len,
hidden_size,
dtype,
enable_fusion,
),
nprocs=nprocs,
)
run_torch_spawn(sequence_parallelism_pass_on_test_model, num_processes)
def sequence_parallelism_pass_on_test_model(
local_rank: int,
world_size: int,
test_model_cls: type[torch.nn.Module],
batch_size: int,
seq_len: int,
hidden_size: int,
dtype: torch.dtype,
enable_fusion: bool,
):
current_platform.seed_everything(0)
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
torch.set_default_device(device)
torch.set_default_dtype(dtype)
update_environment_variables(
{
"RANK": str(local_rank),
"LOCAL_RANK": str(local_rank),
"WORLD_SIZE": str(world_size),
"MASTER_ADDR": "localhost",
"MASTER_PORT": "12345",
}
)
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# configure vllm config for SequenceParallelismPass
vllm_config = VllmConfig()
vllm_config.compilation_config = CompilationConfig(
pass_config=PassConfig(
enable_sequence_parallelism=True,
enable_fusion=enable_fusion,
enable_noop=True,
)
) # NoOp needed for fusion
vllm_config.device_config = DeviceConfig(device=torch.device("cuda"))
# this is a fake model name to construct the model config
# in the vllm_config, it's not really used.
model_name = "RedHatAI/Llama-3.2-1B-Instruct-FP8"
vllm_config.model_config = ModelConfig(
model=model_name, trust_remote_code=True, dtype=dtype, seed=42
)
noop_pass = NoOpEliminationPass(vllm_config)
sequence_parallelism_pass = SequenceParallelismPass(vllm_config)
func_pass = FixFunctionalizationPass(vllm_config)
cleanup_pass = PostCleanupPass(vllm_config)
passes_for_backend: list[VllmInductorPass] = [noop_pass, sequence_parallelism_pass]
if enable_fusion:
fusion_pass = RMSNormQuantFusionPass(vllm_config)
passes_for_backend.append(fusion_pass)
passes_for_backend.append(cleanup_pass)
backend_no_func = TestBackend(*passes_for_backend)
backend_func = TestBackend(*passes_for_backend, func_pass)
model = test_model_cls(hidden_size, hidden_size * 2, vllm_config=vllm_config)
hidden_states = torch.randn((batch_size * seq_len, hidden_size), dtype=dtype)
residual = torch.randn((batch_size * seq_len, hidden_size), dtype=dtype)
compiled_model_no_func = torch.compile(model, backend=backend_no_func)
compiled_model_no_func(hidden_states, residual)
compiled_model_func = torch.compile(model, backend=backend_func)
compiled_model_func(hidden_states, residual)
assert sequence_parallelism_pass.matched_count == 1
# In pre-nodes, all reduce should be there,
# reduce scatter and all gather should not
backend_no_func.check_before_ops(model.ops_in_model_before())
# In post-nodes, reduce scatter and all gather should be there,
# all reduce should not
backend_no_func.check_after_ops(model.ops_in_model_after())
# check if the functionalization pass is applied
for op in model.ops_in_model():
find_auto_fn(backend_no_func.graph_post_pass.nodes, op)
assert find_auto_fn_maybe(backend_func.graph_post_pass.nodes, op) is None
# make sure the ops were all de-functionalized
found = dict()
for node in backend_func.graph_post_pass.nodes:
for op in model.ops_in_model():
if is_func(node, op):
found[op] = True
assert all(found[op] for op in model.ops_in_model())