mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
308 lines
11 KiB
Python
308 lines
11 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import argparse
|
|
import json
|
|
import os
|
|
from importlib import util
|
|
|
|
import pandas as pd
|
|
|
|
plotly_found = util.find_spec("plotly.express") is not None
|
|
|
|
|
|
def compare_data_columns(
|
|
files, name_column, data_column, info_cols, drop_column, debug=False
|
|
):
|
|
"""
|
|
Align concatenation by keys derived from info_cols instead of row order.
|
|
- Pick one canonical key list: subset of info_cols present in ALL files.
|
|
- For each file: set index to those keys, aggregate duplicates
|
|
- (mean for metric, first for names).
|
|
- Concat along axis=1 (indexes align), then reset_index so callers can
|
|
- group by columns.
|
|
- If --debug, add a <file_label>_name column per file.
|
|
"""
|
|
print("\ncompare_data_column:", data_column)
|
|
|
|
frames = []
|
|
raw_data_cols = []
|
|
compare_frames = []
|
|
|
|
# 1) choose a canonical key list from info_cols that exists in ALL files
|
|
cols_per_file = []
|
|
for f in files:
|
|
try:
|
|
df_tmp = pd.read_json(f, orient="records")
|
|
except Exception as err:
|
|
raise ValueError(f"Failed to read {f}") from err
|
|
cols_per_file.append(set(df_tmp.columns))
|
|
|
|
key_cols = [c for c in info_cols if all(c in cset for cset in cols_per_file)]
|
|
if not key_cols:
|
|
# soft fallback: use any info_cols present in the first file
|
|
key_cols = [c for c in info_cols if c in list(cols_per_file[0])]
|
|
if not key_cols:
|
|
raise ValueError(
|
|
"No common key columns found from info_cols across the input files."
|
|
)
|
|
|
|
# 2) build a single "meta" block (keys as columns) once, aligned by the key index
|
|
meta_added = False
|
|
|
|
for file in files:
|
|
df = pd.read_json(file, orient="records")
|
|
|
|
# Keep rows that actually have the compared metric (same as original behavior)
|
|
if drop_column in df.columns:
|
|
df = df.dropna(subset=[drop_column], ignore_index=True)
|
|
|
|
# Stabilize numeric key columns (harmless if missing)
|
|
for c in (
|
|
"Input Len",
|
|
"Output Len",
|
|
"TP Size",
|
|
"PP Size",
|
|
"# of max concurrency.",
|
|
"qps",
|
|
):
|
|
if c in df.columns:
|
|
df[c] = pd.to_numeric(df[c], errors="coerce")
|
|
|
|
# Ensure all key columns exist
|
|
for c in key_cols:
|
|
if c not in df.columns:
|
|
df[c] = pd.NA
|
|
|
|
# Set index = key_cols and aggregate duplicates → unique MultiIndex
|
|
df_idx = df.set_index(key_cols, drop=False)
|
|
|
|
# meta (key columns), unique per key
|
|
meta = df_idx[key_cols]
|
|
if not meta.index.is_unique:
|
|
meta = meta.groupby(level=key_cols, dropna=False).first()
|
|
|
|
# metric series for this file, aggregated to one row per key
|
|
file_label = "/".join(file.split("/")[:-1]) or os.path.basename(file)
|
|
s = df_idx[data_column]
|
|
if not s.index.is_unique:
|
|
s = s.groupby(level=key_cols, dropna=False).mean()
|
|
s.name = file_label # column label like original
|
|
|
|
# add meta once (from first file) so keys are the leftmost columns
|
|
if not meta_added:
|
|
frames.append(meta)
|
|
meta_added = True
|
|
|
|
# (NEW) debug: aligned test-name column per file
|
|
if debug and name_column in df_idx.columns:
|
|
name_s = df_idx[name_column]
|
|
if not name_s.index.is_unique:
|
|
name_s = name_s.groupby(level=key_cols, dropna=False).first()
|
|
name_s.name = f"{file_label}_name"
|
|
frames.append(name_s)
|
|
|
|
frames.append(s)
|
|
raw_data_cols.append(file_label)
|
|
compare_frames.append(s)
|
|
|
|
# Generalize ratio: for any file N>=2, add ratio (fileN / file1)
|
|
if len(compare_frames) >= 2:
|
|
base = compare_frames[0]
|
|
current = compare_frames[-1]
|
|
ratio = current / base
|
|
ratio = ratio.mask(base == 0) # avoid inf when baseline is 0
|
|
ratio.name = f"Ratio 1 vs {len(compare_frames)}"
|
|
frames.append(ratio)
|
|
|
|
# 4) concat on columns with aligned MultiIndex;
|
|
# then reset_index to return keys as columns
|
|
concat_df = pd.concat(frames, axis=1)
|
|
concat_df = concat_df.reset_index(drop=True).reset_index()
|
|
if "index" in concat_df.columns:
|
|
concat_df = concat_df.drop(columns=["index"])
|
|
|
|
# Ensure key/info columns appear first (in your info_cols order)
|
|
front = [c for c in info_cols if c in concat_df.columns]
|
|
rest = [c for c in concat_df.columns if c not in front]
|
|
concat_df = concat_df[front + rest]
|
|
|
|
print(raw_data_cols)
|
|
return concat_df, raw_data_cols
|
|
|
|
|
|
def split_json_by_tp_pp(
|
|
input_file: str = "benchmark_results.json", output_root: str = "."
|
|
) -> list[str]:
|
|
"""
|
|
Split a benchmark JSON into separate folders by (TP Size, PP Size).
|
|
|
|
Creates: <output_root>/tp{TP}_pp{PP}/benchmark_results.json
|
|
Returns: list of file paths written.
|
|
"""
|
|
# Load JSON data into DataFrame
|
|
with open(input_file, encoding="utf-8") as f:
|
|
data = json.load(f)
|
|
|
|
# If the JSON is a dict with a list under common keys, use that list
|
|
if isinstance(data, dict):
|
|
for key in ("results", "serving_results", "benchmarks", "data"):
|
|
if isinstance(data.get(key), list):
|
|
data = data[key]
|
|
break
|
|
|
|
df = pd.DataFrame(data)
|
|
|
|
# Keep only "serving" tests
|
|
name_col = next(
|
|
(c for c in ["Test name", "test_name", "Test Name"] if c in df.columns), None
|
|
)
|
|
if name_col:
|
|
df = df[
|
|
df[name_col].astype(str).str.contains(r"serving", case=False, na=False)
|
|
].copy()
|
|
|
|
# Handle alias column names
|
|
rename_map = {
|
|
"tp_size": "TP Size",
|
|
"tensor_parallel_size": "TP Size",
|
|
"pp_size": "PP Size",
|
|
"pipeline_parallel_size": "PP Size",
|
|
}
|
|
df.rename(
|
|
columns={k: v for k, v in rename_map.items() if k in df.columns}, inplace=True
|
|
)
|
|
|
|
# Ensure TP/PP columns exist (default to 1 if missing)
|
|
if "TP Size" not in df.columns:
|
|
df["TP Size"] = 1
|
|
if "PP Size" not in df.columns:
|
|
df["PP Size"] = 1
|
|
|
|
# make sure TP/PP are numeric ints with no NaN
|
|
df["TP Size"] = (
|
|
pd.to_numeric(df.get("TP Size", 1), errors="coerce").fillna(1).astype(int)
|
|
)
|
|
df["PP Size"] = (
|
|
pd.to_numeric(df.get("PP Size", 1), errors="coerce").fillna(1).astype(int)
|
|
)
|
|
|
|
# Split into separate folders
|
|
saved_paths: list[str] = []
|
|
for (tp, pp), group_df in df.groupby(["TP Size", "PP Size"], dropna=False):
|
|
folder_name = os.path.join(output_root, f"tp{int(tp)}_pp{int(pp)}")
|
|
os.makedirs(folder_name, exist_ok=True)
|
|
filepath = os.path.join(folder_name, "benchmark_results.json")
|
|
group_df.to_json(filepath, orient="records", indent=2, force_ascii=False)
|
|
print(f"Saved: {filepath}")
|
|
saved_paths.append(filepath)
|
|
|
|
return saved_paths
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"-f", "--file", action="append", type=str, help="input file name"
|
|
)
|
|
parser.add_argument(
|
|
"--debug", action="store_true", help="show all information for debugging"
|
|
)
|
|
parser.add_argument(
|
|
"--plot",
|
|
action=argparse.BooleanOptionalAction,
|
|
default=True,
|
|
help="plot perf diagrams or not --no-plot --plot",
|
|
)
|
|
parser.add_argument(
|
|
"-x",
|
|
"--xaxis",
|
|
type=str,
|
|
default="# of max concurrency.",
|
|
help="column name to use as X Axis in comparison graph",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
drop_column = "P99"
|
|
name_column = "Test name"
|
|
info_cols = [
|
|
"Model",
|
|
"Dataset Name",
|
|
"Input Len",
|
|
"Output Len",
|
|
"TP Size",
|
|
"PP Size",
|
|
"# of max concurrency.",
|
|
"qps",
|
|
]
|
|
data_cols_to_compare = ["Output Tput (tok/s)", "Median TTFT (ms)", "Median"]
|
|
html_msgs_for_data_cols = [
|
|
"Compare Output Tokens /n",
|
|
"Median TTFT /n",
|
|
"Median TPOT /n",
|
|
]
|
|
|
|
if len(args.file) == 1:
|
|
files = split_json_by_tp_pp(args.file[0], output_root="splits")
|
|
info_cols = [c for c in info_cols if c not in ("TP Size", "PP Size")]
|
|
else:
|
|
files = args.file
|
|
print("comparing : " + ", ".join(files))
|
|
debug = args.debug
|
|
plot = args.plot
|
|
# For Plot feature, assign y axis from one of info_cols
|
|
y_axis_index = info_cols.index(args.xaxis) if args.xaxis in info_cols else 6
|
|
with open("perf_comparison.html", "w") as text_file:
|
|
for i in range(len(data_cols_to_compare)):
|
|
output_df, raw_data_cols = compare_data_columns(
|
|
files,
|
|
name_column,
|
|
data_cols_to_compare[i],
|
|
info_cols,
|
|
drop_column,
|
|
debug=debug,
|
|
)
|
|
|
|
# For Plot feature, insert y axis from one of info_cols
|
|
raw_data_cols.insert(0, info_cols[y_axis_index])
|
|
|
|
filtered_info_cols = info_cols[:-2]
|
|
existing_group_cols = [
|
|
c for c in filtered_info_cols if c in output_df.columns
|
|
]
|
|
if not existing_group_cols:
|
|
raise ValueError(
|
|
f"No valid group-by columns "
|
|
f"Expected subset: {filtered_info_cols}, "
|
|
f"but DataFrame has: {list(output_df.columns)}"
|
|
)
|
|
output_df_sorted = output_df.sort_values(by=existing_group_cols)
|
|
output_groups = output_df_sorted.groupby(existing_group_cols, dropna=False)
|
|
for name, group in output_groups:
|
|
html = group.to_html()
|
|
text_file.write(html_msgs_for_data_cols[i])
|
|
text_file.write(html)
|
|
|
|
if plot and plotly_found:
|
|
import plotly.express as px
|
|
|
|
df = group[raw_data_cols]
|
|
df_sorted = df.sort_values(by=info_cols[y_axis_index])
|
|
# Melt DataFrame for plotting
|
|
df_melted = df_sorted.melt(
|
|
id_vars=info_cols[y_axis_index],
|
|
var_name="Configuration",
|
|
value_name=data_cols_to_compare[i],
|
|
)
|
|
title = data_cols_to_compare[i] + " vs " + info_cols[y_axis_index]
|
|
# Create Plotly line chart
|
|
fig = px.line(
|
|
df_melted,
|
|
x=info_cols[y_axis_index],
|
|
y=data_cols_to_compare[i],
|
|
color="Configuration",
|
|
title=title,
|
|
markers=True,
|
|
)
|
|
# Export to HTML
|
|
text_file.write(fig.to_html(full_html=True, include_plotlyjs="cdn"))
|