Files
vllm/tests/v1/spec_decode/test_eagle.py
Matthew Bonanni 3468f17ebe [V0 deprecation] Remove _VLLM_V1 suffixes from attention backend names (#25489)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-09-25 17:37:50 +00:00

709 lines
27 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
from unittest import mock
import pytest
import torch
from tests.utils import get_attn_backend_list_based_on_platform
from tests.v1.attention.utils import (BatchSpec, _Backend,
create_common_attn_metadata,
create_standard_kv_cache_spec,
get_attention_backend)
from vllm.config import (CacheConfig, DeviceConfig, ModelConfig,
ParallelConfig, SchedulerConfig, SpeculativeConfig,
VllmConfig)
from vllm.config.load import LoadConfig
from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.platforms import current_platform
from vllm.v1.spec_decode.eagle import EagleProposer
from vllm.v1.spec_decode.metadata import SpecDecodeMetadata
from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
model_dir = "meta-llama/Llama-3.1-8B-Instruct"
eagle_dir = "yuhuili/EAGLE-LLaMA3.1-Instruct-8B"
eagle3_dir = "yuhuili/EAGLE3-LLaMA3.1-Instruct-8B"
def _create_proposer(
method: str,
num_speculative_tokens: int,
speculative_token_tree: Optional[list[tuple[int, ...]]] = None,
) -> EagleProposer:
model_config = ModelConfig(model=model_dir,
runner="generate",
max_model_len=100)
# Choose model directory based on method
draft_model_dir = eagle_dir if method == "eagle" else eagle3_dir
spec_token_tree_str = None
if speculative_token_tree is not None:
assert num_speculative_tokens == len(speculative_token_tree)
spec_token_tree_str = str(speculative_token_tree)
speculative_config = SpeculativeConfig(
target_model_config=model_config,
target_parallel_config=ParallelConfig(),
model=draft_model_dir,
method=method,
num_speculative_tokens=num_speculative_tokens,
speculative_token_tree=spec_token_tree_str,
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=CacheConfig(),
speculative_config=speculative_config,
device_config=DeviceConfig(device=current_platform.device_type),
parallel_config=ParallelConfig(),
load_config=LoadConfig(),
scheduler_config=SchedulerConfig())
return EagleProposer(vllm_config=vllm_config,
device=current_platform.device_type)
def test_prepare_next_token_ids():
"""
Test for prepare_next_token_ids_cpu and prepare_next_token_ids_padded.
Each will produce a device tensor of next_token_ids, taking as input
either the GPU tensor of sampled_token_ids with -1 for rejected tokens,
or the CPU python list[list[int]] with the rejected tokens removed.
"""
device = torch.device(current_platform.device_type)
num_requests = 4
num_speculative_tokens = 4
batch_spec = BatchSpec(
seq_lens=[num_speculative_tokens + 1] * num_requests,
query_lens=[num_speculative_tokens + 1] * num_requests,
)
req_ids = [f"req_{i+1}" for i in range(num_requests)]
mock_input_batch = mock.MagicMock(spec=InputBatch)
mock_input_batch.req_ids = req_ids
mock_input_batch.num_reqs = num_requests
mock_input_batch.vocab_size = 100
mock_num_scheduled_tokens = {req_id: 0 for req_id in req_ids}
mock_requests = {}
for req_id in req_ids:
mock_request = mock.MagicMock(spec=CachedRequestState)
# Each request will have a backup next token id of 10, 20, 30, 40
mock_request.get_token_id.return_value = int(req_id.split("_")[1]) * 10
mock_request.num_computed_tokens = 0
mock_requests[req_id] = mock_request
sampled_token_ids = [
[0, 1, -1, -1, -1], # 1 accepted, 3 rejected, "1" sampled
[0, 1, 2, 3, 4], # all accepted, "4" sampled
[-1, -1, -1, -1, -1], # sampling skipped, use backup token "30"
[-1, -1, -1, -1, -1] # this request will be discarded
]
sampled_token_ids_tensor = torch.tensor(sampled_token_ids,
dtype=torch.int32,
device=device)
sampled_token_ids_cpu = [[i for i in seq if i != -1]
for seq in sampled_token_ids]
expected_next_token_ids_cpu = [1, 4, 30, 40]
expected_next_token_ids_tensor = torch.tensor(expected_next_token_ids_cpu,
dtype=torch.int32,
device=device)
proposer = _create_proposer("eagle", num_speculative_tokens)
next_token_ids_from_cpu = proposer.prepare_next_token_ids_cpu(
sampled_token_ids_cpu, mock_requests, mock_input_batch,
mock_num_scheduled_tokens)
assert torch.equal(next_token_ids_from_cpu, expected_next_token_ids_tensor)
common_attn_metadata = create_common_attn_metadata(
batch_spec,
block_size=16,
device=device,
)
discarded_req_indices = torch.tensor([3], dtype=torch.int64, device=device)
num_discarded_reqs = 1
expected_valid_sampled_tokens_count = torch.tensor([2, 5, 0, 0],
dtype=torch.int32,
device=device)
next_token_ids_from_padded, valid_sampled_tokens_count = \
proposer.prepare_next_token_ids_padded(
common_attn_metadata, sampled_token_ids_tensor, mock_requests,
mock_input_batch, discarded_req_indices, num_discarded_reqs)
assert torch.equal(next_token_ids_from_padded,
expected_next_token_ids_tensor)
assert torch.equal(valid_sampled_tokens_count,
expected_valid_sampled_tokens_count)
def test_prepare_inputs():
"""
cu_target_query_lens: [0, a, a + b, a + b + c]
num_rejected_tokens: [n1, n2, n3]
num_tokens_per_req: [a - n1, b - n2, c - n3]
cu_num_tokens: [0, a - n1, a + b - n1 - n2, a + b + c - n1 - n2 - n3]
token_indices: [0, 1, ..., a - n1 - 1,
a, a + 1, ..., a + b - n2 - 1,
a + b, a + b + 1, ..., a + b + c - n3 - 1]
"""
device = torch.device(current_platform.device_type)
# q1 = 4, q2 = 7, q3 = 5
# n1 = 1, n2 = 3, n3 = 2
batch_spec = BatchSpec(
seq_lens=[4, 7, 5],
query_lens=[4, 7, 5],
)
common_attn_metadata = create_common_attn_metadata(
batch_spec,
block_size=16,
device=device,
)
# If there are `k` sampled tokens, then `k-1` tokens are draft tokens
# from the previous iteration, and the last token is the bonus token sampled
# from the base model.
num_draft_tokens = [3, 6, 4] # one less than query_lens
# num rejected tokens is [1, 3, 2]
ACCEPT_TOKEN = 0
BONUS_TOKEN = 1
REJECT_TOKEN = -1
sampled_token_ids = [
[ACCEPT_TOKEN, ACCEPT_TOKEN, REJECT_TOKEN, BONUS_TOKEN],
[
ACCEPT_TOKEN, ACCEPT_TOKEN, ACCEPT_TOKEN, REJECT_TOKEN,
REJECT_TOKEN, REJECT_TOKEN, BONUS_TOKEN
],
[ACCEPT_TOKEN, ACCEPT_TOKEN, REJECT_TOKEN, REJECT_TOKEN, BONUS_TOKEN]
]
sampled_token_ids = [[i for i in seq if i != REJECT_TOKEN]
for seq in sampled_token_ids]
# Expected calculations:
# query_len_per_req = [4, 7, 5]
# num_tokens_per_req = [3, 4, 3] (after subtracting rejected tokens)
# Expected cumulative counts: [0, 3, 7, 10]
expected_cu_num_tokens = torch.tensor([0, 3, 7, 10],
dtype=torch.int32,
device=device)
# Expected token indices (mapped from original positions):
# First request: indices 0, 1, 2 (keeping first 3 from positions 0-3)
# Second request: indices 4, 5, 6, 7 (keeping first 4 from positions 4-10)
# Third request: indices 11, 12, 13 (keeping first 3 from positions 11-15)
expected_token_indices = torch.tensor(
[
0,
1,
2, # First request: 3 tokens (4-1)
4,
5,
6,
7, # Second request: 4 tokens (7-3)
11,
12,
13 # Third request: 3 tokens (5-2)
],
dtype=torch.int32,
device=device)
proposer = _create_proposer("eagle", 1)
updated_metadata, token_indices = proposer.prepare_inputs(
common_attn_metadata, sampled_token_ids, num_draft_tokens)
assert torch.equal(updated_metadata.query_start_loc,
expected_cu_num_tokens)
assert token_indices.shape[0] == expected_cu_num_tokens[-1].item()
assert torch.equal(token_indices, expected_token_indices)
def test_prepare_inputs_padded():
"""
Input scenario is 3 requests with num_speculative_tokens == 2 and:
- Request 1: query_len = 3, rejected = 1
- Request 2: query_len = 3, rejected = 0
- Request 3: query_len = 3, rejected = 2
Expected outputs:
token_indices: [0, 1, 2,
3, 4, 5,
6, 7, 8]
Reason: Deferred computation should not disturb the original indices.
token_indices_to_sample: [1, 5, 6]
Reason: After accounting for rejections, these are the valid token positions
from the original indices to sample from.
"""
device = torch.device(current_platform.device_type)
expected_token_indices = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8],
dtype=torch.int32,
device=device)
expected_token_indices_to_sample = torch.tensor([1, 5, 6],
dtype=torch.int32,
device=device)
num_speculative_tokens = 2
batch_spec = BatchSpec(
seq_lens=[3, 3, 3],
query_lens=[3, 3, 3],
)
common_attn_metadata = create_common_attn_metadata(
batch_spec,
block_size=16,
device=device,
)
# Needed for cu_num_draft_tokens, which is expected to be [3, 6, 9]
expected_query_start_loc = torch.tensor([0, 3, 6, 9],
dtype=torch.int32,
device=device)
spec_decode_metadata = SpecDecodeMetadata.make_dummy(
draft_token_ids=[[0] * num_speculative_tokens] * 3,
device=device,
)
# num_rejected_tokens = [1, 0, 2]
# num_draft_tokens = [2, 2, 2]
# valid_sampled_tokens_count = num_draft_tokens + 1 - num_rejected_tokens
valid_sampled_tokens_count = torch.tensor([2, 3, 1],
dtype=torch.int32,
device=device)
proposer = _create_proposer("eagle", num_speculative_tokens)
output_metadata, token_indices, token_indices_to_sample = \
proposer.prepare_inputs_padded(
common_attn_metadata,
spec_decode_metadata,
valid_sampled_tokens_count)
assert output_metadata.max_query_len == 3
assert torch.equal(output_metadata.query_start_loc,
expected_query_start_loc)
assert torch.equal(token_indices, expected_token_indices)
assert torch.equal(token_indices_to_sample,
expected_token_indices_to_sample)
@pytest.mark.parametrize("method", ["eagle", "eagle3"])
@pytest.mark.parametrize("attn_backend",
get_attn_backend_list_based_on_platform())
@pytest.mark.parametrize("pp_size", [1, 2])
@pytest.mark.parametrize("use_distinct_embed_tokens", [True, False])
@mock.patch('vllm.v1.spec_decode.eagle.get_pp_group')
@mock.patch('vllm.v1.spec_decode.eagle.get_layers_from_vllm_config')
@mock.patch('vllm.v1.spec_decode.eagle.get_model')
def test_load_model(mock_get_model, mock_get_layers, mock_get_pp_group, method,
attn_backend, pp_size, use_distinct_embed_tokens,
monkeypatch):
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
if (attn_backend == "TRITON_ATTN" and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN does not support "
"multi-token eagle spec decode on current platform")
if attn_backend == "FLASH_ATTN" and current_platform.is_rocm():
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
# Setup draft model mock
mock_model = mock.MagicMock()
if use_distinct_embed_tokens:
# Some models can have a different hidden size than the target model,
# so we test that their embed_tokens doesn't get overwritten
mock_model.model.embed_tokens.weight.shape = (131072, 2048)
else:
mock_model.model.embed_tokens.weight.shape = (131072, 4096)
mock_get_model.return_value = mock_model
# Setup mocks for attention layers
target_attn_layers = {
"target_attn_1": mock.MagicMock(),
"target_attn_2": mock.MagicMock()
}
# Draft model has one extra attention layer compared to target model
all_attn_layers = {
**target_attn_layers, "draft_extra_attn": mock.MagicMock()
}
# Make mock_get_layers return different values for each call
mock_get_layers.side_effect = [target_attn_layers, all_attn_layers]
# Setup mock for pp group to return the appropriate value for world size
mock_pp_group = mock.MagicMock()
mock_pp_group.world_size = pp_size
mock_get_pp_group.return_value = mock_pp_group
# Set up the target model mock with a custom class so that
# isinstance() checks match the expected type.
class _TargetModelStub(LlamaForCausalLM):
model: mock.MagicMock
lm_head: mock.MagicMock
target_model = mock.create_autospec(_TargetModelStub, instance=True)
target_model.model = mock.MagicMock()
target_model.model.embed_tokens.weight.shape = (131072, 4096)
from vllm.model_executor.models import SupportsMultiModal
assert not isinstance(target_model, SupportsMultiModal)
if method == "eagle":
target_model.lm_head = mock.MagicMock()
# Create proposer using the helper function
proposer = _create_proposer(method, num_speculative_tokens=8)
# Call the method under test
proposer.load_model(target_model)
# Verify common interactions
mock_get_model.assert_called_once()
# Verify that EAGLE models gain the lm head from the target model
if method == "eagle":
assert proposer.model.lm_head == target_model.lm_head
# Verify that the embed tokens are set correctly
# If pp_size is > 1, the embed tokens should be distinct
if pp_size > 1 or use_distinct_embed_tokens:
assert proposer.model.model.embed_tokens != \
target_model.model.embed_tokens
else:
# When pp_size is 1 and the draft and target models have
# embed_tokens of the same shape, they should be shared.
assert proposer.model.model.embed_tokens == \
target_model.model.embed_tokens
@pytest.mark.parametrize("method", ["eagle", "eagle3"])
@pytest.mark.parametrize("attn_backend",
get_attn_backend_list_based_on_platform())
@pytest.mark.parametrize("num_speculative_tokens", [1, 3, 8])
def test_propose(method, attn_backend, num_speculative_tokens, monkeypatch):
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
if (attn_backend == "TRITON_ATTN" and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN does not support "
"multi-token eagle spec decode on current platform")
if (attn_backend == "TREE_ATTN"):
pytest.skip("TREE_ATTN is tested separately in test_propose_tree"
"because it requires special input mocking.")
if attn_backend == "FLASH_ATTN" and current_platform.is_rocm():
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
# Use GPU device
device = torch.device(current_platform.device_type)
# Setup test parameters
batch_size = 2
seq_len_1 = 5
seq_len_2 = 3
total_tokens = seq_len_1 + seq_len_2
vocab_size = 100
seq_lens = [seq_len_1, seq_len_2]
# Create proposer first so we can use its actual hidden_size
proposer = _create_proposer("eagle", num_speculative_tokens)
# Get the hidden_size from the proposer to ensure consistency
hidden_size = proposer.hidden_size
# Helper to create deterministic logits that will produce specific tokens
def create_deterministic_logits(token_ids):
logits = torch.full((batch_size, vocab_size), -100.0, device=device)
for i, token_id in enumerate(token_ids):
logits[i, token_id] = 100.0
return logits
# We mock a model that returns deterministic logits
# Sequence 1: 42, 43, 44, ...
# Sequence 2: 60, 61, 62, ...
base_token_ids = [42, 60]
# Skip loading the model and replace it with a mock directly
# Create the mock model with deterministic outputs
model_mock = mock.MagicMock()
# Setup for model forward calls
forward_returns = []
for i in range(num_speculative_tokens):
if i == 0:
# First call uses all tokens
h_logits = torch.zeros(total_tokens, hidden_size, device=device)
h_states = torch.zeros(total_tokens, hidden_size, device=device)
else:
# Subsequent calls use batch_size tokens
h_logits = torch.zeros(batch_size, hidden_size, device=device)
h_states = torch.zeros(batch_size, hidden_size, device=device)
forward_returns.append((h_logits, h_states))
# For single token case, we only need the first item;
# for multi-token, we need the sequence
if num_speculative_tokens == 1:
model_mock.return_value = forward_returns[0]
else:
model_mock.side_effect = forward_returns
# Setup for compute_logits calls
logits_returns = []
for i in range(num_speculative_tokens):
# For each call, increment the base token IDs
current_tokens = [base_id + i for base_id in base_token_ids]
logits_returns.append(create_deterministic_logits(current_tokens))
if num_speculative_tokens == 1:
model_mock.compute_logits.return_value = logits_returns[0]
else:
model_mock.compute_logits.side_effect = logits_returns
# Assign the mock to the proposer
proposer.model = model_mock
# Assign draft attn_layer_names since load_model is not invoked
proposer.attn_layer_names = ["layer.0"]
# Create input tensors
batch_spec = BatchSpec(
seq_lens=seq_lens,
query_lens=seq_lens,
)
common_attn_metadata = create_common_attn_metadata(
batch_spec,
block_size=16,
device=device,
)
target_token_ids = torch.randint(0,
vocab_size, (total_tokens, ),
device=device)
target_positions = torch.cat([
torch.arange(seq_len_1, device=device),
torch.arange(seq_len_2, device=device)
])
target_hidden_states = torch.randn(total_tokens,
hidden_size,
device=device)
next_token_ids = torch.randint(0,
vocab_size, (batch_size, ),
dtype=torch.int32,
device=device)
sampling_metadata = mock.MagicMock()
if attn_backend == "FLASH_ATTN":
attn_metadata_builder_cls, _ = get_attention_backend(
_Backend.FLASH_ATTN)
elif attn_backend == "TRITON_ATTN":
attn_metadata_builder_cls, _ = get_attention_backend(
_Backend.TRITON_ATTN)
elif attn_backend == "TREE_ATTN":
attn_metadata_builder_cls, _ = get_attention_backend(
_Backend.TREE_ATTN)
else:
raise ValueError(f"Unsupported attention backend: {attn_backend}")
attn_metadata_builder = attn_metadata_builder_cls(
kv_cache_spec=create_standard_kv_cache_spec(proposer.vllm_config),
layer_names=proposer.attn_layer_names,
vllm_config=proposer.vllm_config,
device=device,
)
# Mock runner for attention metadata building
proposer.runner = mock.MagicMock()
proposer.runner.attn_groups.append([mock.MagicMock()])
proposer.runner.attn_groups[0][0].get_metadata_builder.return_value = \
attn_metadata_builder
proposer._get_attention_metadata_builder = mock.MagicMock(
return_value=attn_metadata_builder)
result = proposer.propose(target_token_ids=target_token_ids,
target_positions=target_positions,
target_hidden_states=target_hidden_states,
next_token_ids=next_token_ids,
last_token_indices=None,
common_attn_metadata=common_attn_metadata,
sampling_metadata=sampling_metadata)
assert result.shape == (batch_size, num_speculative_tokens)
# Create expected tokens based on our token pattern
if num_speculative_tokens == 1:
# Example for num_speculative_tokens=1:
# [[42], [60]]
expected_tokens = torch.tensor(
[[base_token_ids[0]], [base_token_ids[1]]], device=device)
else:
# Example for num_speculative_tokens=3:
# [[42, 43, 44], [60, 61, 62]]
expected_tokens = torch.zeros((batch_size, num_speculative_tokens),
dtype=torch.int64,
device=device)
for i in range(batch_size):
for j in range(num_speculative_tokens):
expected_tokens[i, j] = base_token_ids[i] + j
# Verify all tokens match our expectations
assert torch.equal(result, expected_tokens)
@pytest.mark.parametrize(
"spec_token_tree",
[
[(0, )], # A single token
[(0, ), (0, 0), (0, 0, 0)], # Chain
[(0, ), (1, ), (2, )], # Parallel
[(0, ), (1, ), (2, ), (0, 0), (0, 1), (1, 0), (1, 1), (2, 0),
(2, 1)], # Tree
])
def test_propose_tree(spec_token_tree):
# Get GPU device.
device = torch.device(current_platform.device_type)
# Setup test parameters.
batch_size = 2
seq_len_1 = 5
seq_len_2 = 3
total_tokens = seq_len_1 + seq_len_2
vocab_size = 100
seq_lens = [seq_len_1, seq_len_2]
num_speculative_tokens = len(spec_token_tree)
# Create proposer first so we can use its actual hidden_size.
proposer = _create_proposer("eagle",
num_speculative_tokens,
speculative_token_tree=spec_token_tree)
# Get the hidden_size from the proposer to ensure consistency.
hidden_size = proposer.hidden_size
# Helper to create deterministic logits that will produce specific tokens
def create_deterministic_logits(token_ids, k: int):
logits = torch.full((batch_size, vocab_size), -100.0, device=device)
for i, token_id in enumerate(token_ids):
# Assign decreasing values to the k, consecutive, tokens.
for j in range(k):
logits[i, token_id + j] = 100.0 - j
return logits
# Mock a model that returns deterministic logits.
base_token_ids = torch.tensor([42, 60], dtype=torch.int64, device=device)
# Skip loading the model and replace it with a mock that returns
# deterministic outputs.
model_mock = mock.MagicMock()
# Mock the model forward calls.
forward_returns = [(torch.zeros(total_tokens, hidden_size, device=device),
torch.zeros(total_tokens, hidden_size, device=device))]
for cu_num_drafts in proposer.cu_drafts_per_level:
h_logits = torch.zeros(batch_size * cu_num_drafts,
hidden_size,
device=device)
h_states = torch.zeros(batch_size * cu_num_drafts,
hidden_size,
device=device)
forward_returns.append((h_logits, h_states))
model_mock.side_effect = forward_returns
# Mock the compute_logits calls.
cu_num_drafts_tensor = torch.tensor([0] + proposer.cu_drafts_per_level,
dtype=torch.int32,
device=device)
logits_returns = []
for level, num_children in enumerate(proposer.child_drafts_per_level):
token_ids = base_token_ids + cu_num_drafts_tensor[level]
level_num_drafts = cu_num_drafts_tensor[
level + 1] - cu_num_drafts_tensor[level]
level_logits = []
for i in range(level_num_drafts // num_children):
level_logits.append(
create_deterministic_logits(token_ids + i * num_children,
num_children))
logits_returns.append(torch.stack(level_logits, dim=1))
model_mock.compute_logits.side_effect = logits_returns
# Assign the mock to the proposer
proposer.model = model_mock
# Assign draft attn_layer_names since load_model is not invoked
proposer.attn_layer_names = ["layer.0"]
# Get the tree attention metadata builder.
attn_metadata_builder_cls, _ = get_attention_backend(_Backend.TREE_ATTN)
attn_metadata_builder = attn_metadata_builder_cls(
kv_cache_spec=create_standard_kv_cache_spec(proposer.vllm_config),
layer_names=proposer.attn_layer_names,
vllm_config=proposer.vllm_config,
device=device,
)
# Mock runner for attention metadata building.
proposer.runner = mock.MagicMock()
proposer.runner.attn_groups.append([mock.MagicMock()])
proposer.runner.attn_groups[0][0].get_metadata_builder.return_value = \
attn_metadata_builder
proposer._get_attention_metadata_builder = mock.MagicMock(
return_value=attn_metadata_builder)
# Setup inputs for the proposer.
target_token_ids = torch.randint(0,
vocab_size, (total_tokens, ),
device=device)
target_positions = torch.cat([
torch.arange(seq_len_1, device=device),
torch.arange(seq_len_2, device=device)
])
target_hidden_states = torch.randn(total_tokens,
hidden_size,
device=device)
next_token_ids = torch.randint(0,
vocab_size, (batch_size, ),
dtype=torch.int32,
device=device)
batch_spec = BatchSpec(
seq_lens=seq_lens,
query_lens=seq_lens,
)
common_attn_metadata = create_common_attn_metadata(
batch_spec,
block_size=16,
device=device,
)
sampling_metadata = mock.MagicMock()
# Propose draft tokens.
result = proposer.propose(target_token_ids=target_token_ids,
target_positions=target_positions,
target_hidden_states=target_hidden_states,
next_token_ids=next_token_ids,
last_token_indices=None,
common_attn_metadata=common_attn_metadata,
sampling_metadata=sampling_metadata)
assert result.shape == (batch_size, num_speculative_tokens)
# The tokens are expected to be consecutive integers starting
# from the base token IDs.
expected_tokens = base_token_ids[:, None] + torch.arange(
num_speculative_tokens, dtype=torch.int64, device=device)
# Verify that the draft tokens match our expectations.
assert torch.equal(result, expected_tokens)