mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
390 lines
14 KiB
Python
390 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import base64
|
|
import mimetypes
|
|
import os
|
|
from tempfile import NamedTemporaryFile, TemporaryDirectory
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from PIL import Image, ImageChops
|
|
|
|
from vllm.multimodal.image import convert_image_mode
|
|
from vllm.multimodal.inputs import PlaceholderRange
|
|
from vllm.multimodal.utils import MediaConnector, argsort_mm_positions
|
|
|
|
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
|
|
TEST_IMAGE_ASSETS = [
|
|
"2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", # "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
|
"Grayscale_8bits_palette_sample_image.png", # "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
|
|
"1280px-Venn_diagram_rgb.svg.png", # "https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
|
|
"RGBA_comp.png", # "https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
|
|
]
|
|
|
|
TEST_VIDEO_URLS = [
|
|
"https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4",
|
|
"https://github.com/opencv/opencv/raw/refs/tags/4.12.0/samples/data/vtest.avi",
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def url_images(local_asset_server) -> dict[str, Image.Image]:
|
|
|
|
return {
|
|
image_url: local_asset_server.get_image_asset(image_url)
|
|
for image_url in TEST_IMAGE_ASSETS
|
|
}
|
|
|
|
|
|
def get_supported_suffixes() -> tuple[str, ...]:
|
|
# We should at least test the file types mentioned in GPT-4 with Vision
|
|
OPENAI_SUPPORTED_SUFFIXES = ('.png', '.jpeg', '.jpg', '.webp', '.gif')
|
|
|
|
# Additional file types that are supported by us
|
|
EXTRA_SUPPORTED_SUFFIXES = ('.bmp', '.tiff')
|
|
|
|
return OPENAI_SUPPORTED_SUFFIXES + EXTRA_SUPPORTED_SUFFIXES
|
|
|
|
|
|
def _image_equals(a: Image.Image, b: Image.Image) -> bool:
|
|
return (np.asarray(a) == np.asarray(convert_image_mode(b, a.mode))).all()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_ASSETS, indirect=True)
|
|
async def test_fetch_image_http(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
image_sync = connector.fetch_image(image_url)
|
|
image_async = await connector.fetch_image_async(image_url)
|
|
assert _image_equals(image_sync, image_async)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("raw_image_url", TEST_IMAGE_ASSETS)
|
|
@pytest.mark.parametrize("suffix", get_supported_suffixes())
|
|
async def test_fetch_image_base64(url_images: dict[str, Image.Image],
|
|
raw_image_url: str, suffix: str):
|
|
connector = MediaConnector()
|
|
url_image = url_images[raw_image_url]
|
|
|
|
try:
|
|
mime_type = Image.MIME[Image.registered_extensions()[suffix]]
|
|
except KeyError:
|
|
try:
|
|
mime_type = mimetypes.types_map[suffix]
|
|
except KeyError:
|
|
pytest.skip('No MIME type')
|
|
|
|
with NamedTemporaryFile(suffix=suffix) as f:
|
|
try:
|
|
url_image.save(f.name)
|
|
except Exception as e:
|
|
if e.args[0] == 'cannot write mode RGBA as JPEG':
|
|
pytest.skip('Conversion not supported')
|
|
|
|
raise
|
|
|
|
base64_image = base64.b64encode(f.read()).decode("utf-8")
|
|
data_url = f"data:{mime_type};base64,{base64_image}"
|
|
|
|
data_image_sync = connector.fetch_image(data_url)
|
|
if _image_equals(url_image, Image.open(f)):
|
|
assert _image_equals(url_image, data_image_sync)
|
|
else:
|
|
pass # Lossy format; only check that image can be opened
|
|
|
|
data_image_async = await connector.fetch_image_async(data_url)
|
|
assert _image_equals(data_image_sync, data_image_async)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_ASSETS, indirect=True)
|
|
async def test_fetch_image_local_files(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
with TemporaryDirectory() as temp_dir:
|
|
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
|
|
|
|
origin_image = connector.fetch_image(image_url)
|
|
origin_image.save(os.path.join(temp_dir, os.path.basename(image_url)),
|
|
quality=100,
|
|
icc_profile=origin_image.info.get('icc_profile'))
|
|
|
|
image_async = await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/{os.path.basename(image_url)}")
|
|
image_sync = local_connector.fetch_image(
|
|
f"file://{temp_dir}/{os.path.basename(image_url)}")
|
|
# Check that the images are equal
|
|
assert not ImageChops.difference(image_sync, image_async).getbbox()
|
|
|
|
with pytest.raises(ValueError, match="must be a subpath"):
|
|
await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
with pytest.raises(RuntimeError, match="Cannot load local files"):
|
|
await connector.fetch_image_async(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
|
|
with pytest.raises(ValueError, match="must be a subpath"):
|
|
local_connector.fetch_image(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
with pytest.raises(RuntimeError, match="Cannot load local files"):
|
|
connector.fetch_image(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", [TEST_IMAGE_ASSETS[0]], indirect=True)
|
|
async def test_fetch_image_local_files_with_space_in_name(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
with TemporaryDirectory() as temp_dir:
|
|
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
|
|
|
|
origin_image = connector.fetch_image(image_url)
|
|
filename = "file name with space.jpg"
|
|
origin_image.save(os.path.join(temp_dir, filename),
|
|
quality=100,
|
|
icc_profile=origin_image.info.get('icc_profile'))
|
|
|
|
try:
|
|
image_async = await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/{filename}")
|
|
image_sync = local_connector.fetch_image(
|
|
f"file://{temp_dir}/{filename}")
|
|
except FileNotFoundError as e:
|
|
pytest.fail(
|
|
"Failed to fetch image with space in name: {}".format(e))
|
|
# Check that the images are equal
|
|
assert not ImageChops.difference(image_sync, image_async).getbbox()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_fetch_image_error_conversion():
|
|
connector = MediaConnector()
|
|
broken_img = ""
|
|
|
|
# PIL.UnidentifiedImageError should be converted to ValueError
|
|
with pytest.raises(ValueError):
|
|
await connector.fetch_image_async(broken_img)
|
|
|
|
with pytest.raises(ValueError):
|
|
connector.fetch_image(broken_img)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
|
|
@pytest.mark.parametrize("num_frames", [-1, 32, 1800])
|
|
async def test_fetch_video_http(video_url: str, num_frames: int):
|
|
connector = MediaConnector(
|
|
media_io_kwargs={"video": {
|
|
"num_frames": num_frames,
|
|
}})
|
|
|
|
video_sync, metadata_sync = connector.fetch_video(video_url)
|
|
video_async, metadata_async = await connector.fetch_video_async(video_url)
|
|
assert np.array_equal(video_sync, video_async)
|
|
assert metadata_sync == metadata_async
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
|
|
@pytest.mark.parametrize("max_duration", [1, 60, 1800])
|
|
@pytest.mark.parametrize("requested_fps", [2, 24])
|
|
async def test_fetch_video_http_with_dynamic_loader(
|
|
video_url: str, max_duration: int, requested_fps: int,
|
|
monkeypatch: pytest.MonkeyPatch):
|
|
with monkeypatch.context() as m:
|
|
m.setenv("VLLM_VIDEO_LOADER_BACKEND", "opencv_dynamic")
|
|
connector = MediaConnector(
|
|
media_io_kwargs={
|
|
"video": {
|
|
"max_duration": max_duration,
|
|
"requested_fps": requested_fps,
|
|
}
|
|
})
|
|
|
|
video_sync, metadata_sync = connector.fetch_video(video_url)
|
|
video_async, metadata_async = await connector.fetch_video_async(
|
|
video_url)
|
|
|
|
assert np.array_equal(video_sync, video_async)
|
|
assert metadata_sync == metadata_async
|
|
assert metadata_sync["video_backend"] == "opencv_dynamic"
|
|
|
|
|
|
# yapf: disable
|
|
@pytest.mark.parametrize(
|
|
"case",
|
|
[
|
|
# Single modality
|
|
## Internally sorted
|
|
dict(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=3, length=2),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
## Internally unsorted
|
|
dict(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=3, length=2),
|
|
PlaceholderRange(offset=0, length=2),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 1),
|
|
("image", 0),
|
|
],
|
|
),
|
|
|
|
# Two modalities
|
|
## Internally sorted
|
|
dict(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=7, length=4),
|
|
PlaceholderRange(offset=11, length=5),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("audio", 0),
|
|
("audio", 1),
|
|
("image", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
## Interleaved, internally sorted
|
|
dict(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=4),
|
|
PlaceholderRange(offset=8, length=2),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
PlaceholderRange(offset=11, length=4),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("audio", 0),
|
|
("image", 1),
|
|
("audio", 1),
|
|
],
|
|
),
|
|
## Interleaved, internally unsorted
|
|
dict(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=8, length=2),
|
|
PlaceholderRange(offset=0, length=4),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=11, length=4),
|
|
PlaceholderRange(offset=5, length=2),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 1),
|
|
("audio", 1),
|
|
("image", 0),
|
|
("audio", 0),
|
|
],
|
|
),
|
|
|
|
# Three modalities
|
|
## Internally sorted
|
|
dict(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=15, length=7),
|
|
PlaceholderRange(offset=22, length=8),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=3, length=4),
|
|
PlaceholderRange(offset=7, length=5),
|
|
PlaceholderRange(offset=12, length=6),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("audio", 0),
|
|
("video", 0),
|
|
("video", 1),
|
|
("video", 2),
|
|
("image", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
## Interleaved, internally sorted
|
|
dict(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
PlaceholderRange(offset=20, length=4),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=8, length=5),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("image", 1),
|
|
("audio", 0),
|
|
("video", 0),
|
|
("image", 2),
|
|
],
|
|
),
|
|
## Interleaved, internally unsorted
|
|
dict(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=20, length=4),
|
|
PlaceholderRange(offset=2, length=3),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=8, length=5),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("image", 2),
|
|
("audio", 0),
|
|
("video", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
],
|
|
)
|
|
# yapf: enable
|
|
def test_argsort_mm_positions(case):
|
|
mm_positions = case["mm_positions"]
|
|
expected_modality_idxs = case["expected_modality_idxs"]
|
|
|
|
modality_idxs = argsort_mm_positions(mm_positions)
|
|
|
|
assert modality_idxs == expected_modality_idxs
|