Files
vllm/tests/models/multimodal/processing/test_common.py
2025-09-25 14:46:04 +00:00

438 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from functools import partial
from typing import Optional, Union
import numpy as np
import pytest
from mistral_common.protocol.instruct.messages import (ImageChunk, TextChunk,
UserMessage)
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from PIL import Image
from vllm.config import ModelConfig
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalDataDict
from vllm.multimodal.cache import MultiModalProcessorOnlyCache
from vllm.multimodal.inputs import MultiModalInputs
from vllm.multimodal.processing import (BaseMultiModalProcessor,
InputProcessingContext)
from vllm.transformers_utils.tokenizer import (AnyTokenizer, MistralTokenizer,
cached_tokenizer_from_config,
encode_tokens)
from ....multimodal.utils import random_audio, random_image, random_video
from ...registry import HF_EXAMPLE_MODELS
def glm4_1v_patch_mm_data(mm_data: MultiModalDataDict) -> MultiModalDataDict:
"""
Patch the multimodal data for GLM4.1V model.
"""
# Ensure video metadata is included
if "video" in mm_data:
# GLM4.1V doesn't support multiple videos
video = mm_data["video"]
num_frames = len(video)
mm_data["video"] = (video, {
"total_num_frames": num_frames,
"fps": num_frames,
"duration": 1,
"frames_indices": [i for i in range(num_frames)],
"video_backend": "opencv",
"do_sample_frames": True,
})
return mm_data
def qwen3_vl_patch_mm_data(mm_data: MultiModalDataDict) -> MultiModalDataDict:
"""
Patch the multimodal data for Qwen3-VL model.
"""
def create_metadata(frames: np.ndarray):
num_frames = len(frames)
return {
"total_num_frames": num_frames,
"fps": 2.0,
"duration": num_frames / 2.0,
"video_backend": "opencv",
"frames_indices": list(range(num_frames)),
"do_sample_frames": True,
}
# Ensure video metadata is included
if "video" in mm_data:
video = mm_data["video"]
if isinstance(video, list):
# multiple videos
mm_data["video"] = [(vid, create_metadata(vid)) for vid in video]
else:
# single video
mm_data["video"] = (video, create_metadata(video))
return mm_data
def _test_processing_correctness(
model_id_or_arch: str,
hit_rate: float,
num_batches: int,
simplify_rate: float,
):
if model_id_or_arch in HF_EXAMPLE_MODELS.get_supported_archs():
# Use model architecture to get the default model id
model_info = HF_EXAMPLE_MODELS.get_hf_info(model_id_or_arch)
model_id = model_info.default
else:
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id_or_arch)
model_id = model_id_or_arch
model_info.check_available_online(on_fail="skip")
model_info.check_transformers_version(on_fail="skip")
model_config = ModelConfig(
model_id,
tokenizer=model_info.tokenizer or model_id,
tokenizer_mode=model_info.tokenizer_mode,
revision=model_info.revision,
trust_remote_code=model_info.trust_remote_code,
hf_overrides=model_info.hf_overrides,
# Ensure that the cache can fit all of the data
mm_processor_cache_gb=2048,
skip_tokenizer_init=model_info.skip_tokenizer_init,
enforce_eager=model_info.enforce_eager,
dtype=model_info.dtype)
model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config)
factories = MULTIMODAL_REGISTRY._processor_factories[model_cls]
ctx = InputProcessingContext(
model_config,
tokenizer=cached_tokenizer_from_config(model_config),
)
cache = MultiModalProcessorOnlyCache(model_config)
processing_info = factories.info(ctx)
supported_mm_limits = processing_info.get_supported_mm_limits()
limit_mm_per_prompt = {
modality: 3 if limit is None else limit
for modality, limit in supported_mm_limits.items()
}
model_config.get_multimodal_config().limit_per_prompt = limit_mm_per_prompt
baseline_processor = factories.build_processor(ctx, cache=None)
cached_processor = factories.build_processor(ctx, cache=cache)
dummy_inputs = baseline_processor.dummy_inputs
tokenizer = baseline_processor.info.get_tokenizer()
rng = np.random.RandomState(0)
input_to_hit = {
"image": Image.new("RGB", size=(128, 128)),
"video": np.zeros((4, 128, 128, 3), dtype=np.uint8),
"audio": (np.zeros((512, )), 16000),
}
input_factory = {
"image":
partial(random_image, rng, min_wh=128, max_wh=256),
"video":
partial(random_video,
rng,
min_frames=2,
max_frames=16,
min_wh=128,
max_wh=256),
"audio":
partial(random_audio, rng, min_len=512, max_len=1024, sr=16000),
}
for batch_idx in range(num_batches):
mm_data = {
k:
[(input_to_hit[k] if rng.rand() < hit_rate else input_factory[k]())
for _ in range(rng.randint(limit + 1))]
for k, limit in limit_mm_per_prompt.items()
}
mm_counts = {k: len(vs) for k, vs in mm_data.items()}
# Mistral chat outputs tokens directly, rather than text prompts
if isinstance(tokenizer, MistralTokenizer):
images = mm_data.get("image", [])
request = ChatCompletionRequest(messages=[
UserMessage(content=[
TextChunk(text=""),
*(ImageChunk(image=image) for image in images),
]),
])
res = tokenizer.mistral.encode_chat_completion(request)
prompt = res.tokens
else:
prompt = dummy_inputs.get_dummy_processor_inputs(
model_config.max_model_len,
mm_counts,
).prompt
# Drop unnecessary keys and test single -> multi conversion
if rng.rand() < simplify_rate:
for k in list(mm_data.keys()):
if not mm_data[k]:
del mm_data[k]
elif len(mm_data[k]) == 1:
mm_data[k] = mm_data[k][0]
_test_processing_correctness_one(
model_config,
tokenizer,
prompt,
mm_data,
baseline_processor,
cached_processor,
batch_idx,
)
# For some multimodal models, tokenizer will always add bos_token
# at the beginning of prompt by default, causing hf_processor outputs
# incorrect token ids. So we need use `add_special_tokens=False` here
# to leave bos_token to be added by the processor.
_ADD_SPECIAL_TOKENS_OVERRIDES = {
"ovis": False,
"ovis2_5": False,
"paligemma": False,
"ultravox": False,
"whisper": False,
}
_IGNORE_MM_KEYS = {
# In Ultravox, the audio_features can be different depending on padding
# The slight difference should not be a problem though, since
# attention_mask lets us ignore the difference.
"ultravox": {"audio_features"},
}
MM_DATA_PATCHES = {
# GLM4.1V and Qwen3-VL requires video metadata to be included in the input
"glm4v": glm4_1v_patch_mm_data,
"glm4v_moe": glm4_1v_patch_mm_data,
"qwen3_vl": qwen3_vl_patch_mm_data,
"qwen3_vl_moe": qwen3_vl_patch_mm_data,
}
def _test_processing_correctness_one(
model_config: ModelConfig,
tokenizer: AnyTokenizer,
prompt: Union[str, list[int]],
mm_data: MultiModalDataDict,
baseline_processor: BaseMultiModalProcessor,
cached_processor: BaseMultiModalProcessor,
batch_idx: int,
):
model_type = model_config.hf_config.model_type
ignore_mm_keys = _IGNORE_MM_KEYS.get(model_type, set[str]())
if model_type in MM_DATA_PATCHES:
mm_data = MM_DATA_PATCHES[model_type](mm_data)
if isinstance(prompt, str):
text_prompt = prompt
token_prompt = encode_tokens(
tokenizer,
prompt,
add_special_tokens=_ADD_SPECIAL_TOKENS_OVERRIDES.get(model_type),
)
else:
# Mistral does not support decode_tokens with skip_special_tokens=False
text_prompt = None
token_prompt = prompt
baseline_tokenized_result = baseline_processor.apply(
token_prompt,
mm_data=mm_data,
hf_processor_mm_kwargs={},
)
cached_tokenized_result = cached_processor.apply(
token_prompt,
mm_data=mm_data,
hf_processor_mm_kwargs={},
)
_assert_inputs_equal(
baseline_tokenized_result,
cached_tokenized_result,
ignore_mm_keys=ignore_mm_keys,
msg=f"Failed ({batch_idx=}, {token_prompt=}, {mm_data=})",
)
if text_prompt is not None:
baseline_text_result = baseline_processor.apply(
text_prompt,
mm_data=mm_data,
hf_processor_mm_kwargs={},
)
cached_text_result = cached_processor.apply(
text_prompt,
mm_data=mm_data,
hf_processor_mm_kwargs={},
)
_assert_inputs_equal(
baseline_text_result,
cached_text_result,
ignore_mm_keys=ignore_mm_keys,
msg=f"Failed ({batch_idx=}, {text_prompt=}, {mm_data=})",
)
_assert_inputs_equal(
baseline_text_result,
baseline_tokenized_result,
ignore_mm_keys=ignore_mm_keys,
msg=f"Failed ({batch_idx=}, {text_prompt=}, "
f"{token_prompt=}, {mm_data=})",
)
_assert_inputs_equal(
cached_text_result,
cached_tokenized_result,
ignore_mm_keys=ignore_mm_keys,
msg=f"Failed ({batch_idx=}, {text_prompt=}, "
f"{token_prompt=}, {mm_data=})",
)
# yapf: disable
@pytest.mark.parametrize("model_id", [
"rhymes-ai/Aria",
"CohereForAI/aya-vision-8b",
"Salesforce/blip2-opt-2.7b",
"facebook/chameleon-7b",
"CohereLabs/command-a-vision-07-2025",
"deepseek-ai/deepseek-vl2-tiny",
"baidu/ERNIE-4.5-VL-28B-A3B-PT",
"adept/fuyu-8b",
"google/gemma-3-4b-it",
"google/gemma-3n-E2B-it",
"zai-org/glm-4v-9b",
"zai-org/GLM-4.1V-9B-Thinking",
"zai-org/GLM-4.5V",
"ibm-granite/granite-speech-3.3-2b",
"h2oai/h2ovl-mississippi-800m",
"naver-hyperclovax/HyperCLOVAX-SEED-Vision-Instruct-3B",
"HuggingFaceM4/Idefics3-8B-Llama3",
"internlm/Intern-S1",
"OpenGVLab/InternVL2-1B",
"OpenGVLab/InternVL3-1B",
"OpenGVLab/InternVL3_5-1B",
"OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview",
"OpenGVLab/InternVL3_5-30B-A3B",
"Kwai-Keye/Keye-VL-8B-Preview",
"Kwai-Keye/Keye-VL-1_5-8B",
"moonshotai/Kimi-VL-A3B-Instruct",
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
"llava-hf/llava-1.5-7b-hf",
"llava-hf/llava-v1.6-mistral-7b-hf",
"llava-hf/LLaVA-NeXT-Video-7B-hf",
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf",
"TIGER-Lab/Mantis-8B-siglip-llama3",
"mispeech/midashenglm-7b",
"openbmb/MiniCPM-Llama3-V-2_5",
"openbmb/MiniCPM-o-2_6",
"openbmb/MiniCPM-V-2_6",
"MiniMaxAI/MiniMax-VL-01",
"allenai/Molmo-7B-D-0924",
"allenai/Molmo-7B-O-0924",
"nvidia/NVLM-D-72B",
"nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1",
"AIDC-AI/Ovis1.6-Gemma2-9B",
"AIDC-AI/Ovis1.6-Llama3.2-3B",
"AIDC-AI/Ovis2-1B",
"AIDC-AI/Ovis2.5-2B",
"google/paligemma-3b-mix-224",
"google/paligemma2-3b-ft-docci-448",
"microsoft/Phi-3.5-vision-instruct",
"microsoft/Phi-4-multimodal-instruct",
"mistralai/Pixtral-12B-2409",
"mistral-community/pixtral-12b",
"Qwen/Qwen-VL-Chat",
"Qwen/Qwen2-VL-2B-Instruct",
"Qwen/Qwen2.5-VL-3B-Instruct",
"Qwen/Qwen2-Audio-7B-Instruct",
"Qwen/Qwen2.5-Omni-3B",
"Qwen/Qwen3-VL-4B-Instruct",
"Qwen/Qwen3-VL-30B-A3B-Instruct",
"YannQi/R-4B",
"Skywork/Skywork-R1V-38B",
"HuggingFaceTB/SmolVLM2-2.2B-Instruct",
"stepfun-ai/step3",
"fixie-ai/ultravox-v0_5-llama-3_2-1b",
"openai/whisper-large-v3",
"omni-research/Tarsier-7b",
"omni-research/Tarsier2-Recap-7b",
"mistralai/Voxtral-Mini-3B-2507",
])
@pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0])
@pytest.mark.parametrize("num_batches", [32])
@pytest.mark.parametrize("simplify_rate", [1.0])
# yapf: enable
def test_processing_correctness(
model_id: str,
hit_rate: float,
num_batches: int,
simplify_rate: float,
):
if model_id == "google/gemma-3n-E2B-it":
pytest.skip("Skipping gemma-3n-E2B-it due to transformers #39911 bug.")
_test_processing_correctness(
model_id,
hit_rate=hit_rate,
num_batches=num_batches,
simplify_rate=simplify_rate,
)
# Phi4MultimodalForCausalLM share same model repo with original format
# Phi4MMForCausalLM, so we add it as a separate test case
# Remove this test after conversion PR merged:
# https://huggingface.co/microsoft/Phi-4-multimodal-instruct/discussions/70
@pytest.mark.parametrize("model_arch", ["Phi4MultimodalForCausalLM"])
@pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0])
@pytest.mark.parametrize("num_batches", [32])
@pytest.mark.parametrize("simplify_rate", [1.0])
def test_processing_correctness_phi4_multimodal(
model_arch: str,
hit_rate: float,
num_batches: int,
simplify_rate: float,
):
_test_processing_correctness(
model_arch,
hit_rate=hit_rate,
num_batches=num_batches,
simplify_rate=simplify_rate,
)
def _assert_inputs_equal(
a: MultiModalInputs,
b: MultiModalInputs,
*,
ignore_mm_keys: Optional[set[str]] = None,
msg: str = "",
):
if ignore_mm_keys is None:
ignore_mm_keys = set()
a_rest = {k: v for k, v in a.items() if k != "mm_kwargs"}
b_rest = {k: v for k, v in b.items() if k != "mm_kwargs"}
assert a_rest == b_rest, msg
a_data = a["mm_kwargs"].get_data()
b_data = b["mm_kwargs"].get_data()
for key in ignore_mm_keys:
a_data.pop(key, None)
b_data.pop(key, None)
assert a_data == b_data, msg