mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai> Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
89 lines
2.7 KiB
Python
89 lines
2.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import weakref
|
|
|
|
import pytest
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.distributed import cleanup_dist_env_and_memory
|
|
|
|
MODEL_NAME = "distilbert/distilgpt2"
|
|
|
|
PROMPTS = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
|
|
TOKEN_IDS = [
|
|
[0],
|
|
[0, 1],
|
|
[0, 2, 1],
|
|
[0, 3, 1, 2],
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def llm():
|
|
# pytest caches the fixture so we use weakref.proxy to
|
|
# enable garbage collection
|
|
llm = LLM(model=MODEL_NAME,
|
|
max_num_batched_tokens=4096,
|
|
tensor_parallel_size=1,
|
|
gpu_memory_utilization=0.10,
|
|
enforce_eager=True)
|
|
|
|
yield weakref.proxy(llm)
|
|
|
|
del llm
|
|
|
|
cleanup_dist_env_and_memory()
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_multiple_sampling_params(llm: LLM):
|
|
sampling_params = [
|
|
SamplingParams(temperature=0.01, top_p=0.95),
|
|
SamplingParams(temperature=0.3, top_p=0.95),
|
|
SamplingParams(temperature=0.7, top_p=0.95),
|
|
SamplingParams(temperature=0.99, top_p=0.95),
|
|
]
|
|
|
|
# Multiple SamplingParams should be matched with each prompt
|
|
outputs = llm.generate(PROMPTS, sampling_params=sampling_params)
|
|
assert len(PROMPTS) == len(outputs)
|
|
|
|
# Exception raised, if the size of params does not match the size of prompts
|
|
with pytest.raises(ValueError):
|
|
outputs = llm.generate(PROMPTS, sampling_params=sampling_params[:3])
|
|
|
|
# Single SamplingParams should be applied to every prompt
|
|
single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95)
|
|
outputs = llm.generate(PROMPTS, sampling_params=single_sampling_params)
|
|
assert len(PROMPTS) == len(outputs)
|
|
|
|
# sampling_params is None, default params should be applied
|
|
outputs = llm.generate(PROMPTS, sampling_params=None)
|
|
assert len(PROMPTS) == len(outputs)
|
|
|
|
|
|
def test_max_model_len():
|
|
max_model_len = 20
|
|
llm = LLM(
|
|
model=MODEL_NAME,
|
|
max_model_len=max_model_len,
|
|
gpu_memory_utilization=0.10,
|
|
enforce_eager=True, # reduce test time
|
|
)
|
|
sampling_params = SamplingParams(max_tokens=max_model_len + 10)
|
|
outputs = llm.generate(PROMPTS, sampling_params)
|
|
for output in outputs:
|
|
num_total_tokens = len(output.prompt_token_ids) + len(
|
|
output.outputs[0].token_ids)
|
|
# Total tokens must not exceed max_model_len.
|
|
# It can be less if generation finishes due to other reasons (e.g., EOS)
|
|
# before reaching the absolute model length limit.
|
|
assert num_total_tokens <= max_model_len
|