Files
vllm/tests/entrypoints/llm/test_generate.py
Woosuk Kwon 52c2a8d4ad [V0 Deprecation] Remove LLMEngine (#25033)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-20 17:56:30 -07:00

89 lines
2.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
import pytest
from vllm import LLM, SamplingParams
from vllm.distributed import cleanup_dist_env_and_memory
MODEL_NAME = "distilbert/distilgpt2"
PROMPTS = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
TOKEN_IDS = [
[0],
[0, 1],
[0, 2, 1],
[0, 3, 1, 2],
]
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(model=MODEL_NAME,
max_num_batched_tokens=4096,
tensor_parallel_size=1,
gpu_memory_utilization=0.10,
enforce_eager=True)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
@pytest.mark.skip_global_cleanup
def test_multiple_sampling_params(llm: LLM):
sampling_params = [
SamplingParams(temperature=0.01, top_p=0.95),
SamplingParams(temperature=0.3, top_p=0.95),
SamplingParams(temperature=0.7, top_p=0.95),
SamplingParams(temperature=0.99, top_p=0.95),
]
# Multiple SamplingParams should be matched with each prompt
outputs = llm.generate(PROMPTS, sampling_params=sampling_params)
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.generate(PROMPTS, sampling_params=sampling_params[:3])
# Single SamplingParams should be applied to every prompt
single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95)
outputs = llm.generate(PROMPTS, sampling_params=single_sampling_params)
assert len(PROMPTS) == len(outputs)
# sampling_params is None, default params should be applied
outputs = llm.generate(PROMPTS, sampling_params=None)
assert len(PROMPTS) == len(outputs)
def test_max_model_len():
max_model_len = 20
llm = LLM(
model=MODEL_NAME,
max_model_len=max_model_len,
gpu_memory_utilization=0.10,
enforce_eager=True, # reduce test time
)
sampling_params = SamplingParams(max_tokens=max_model_len + 10)
outputs = llm.generate(PROMPTS, sampling_params)
for output in outputs:
num_total_tokens = len(output.prompt_token_ids) + len(
output.outputs[0].token_ids)
# Total tokens must not exceed max_model_len.
# It can be less if generation finishes due to other reasons (e.g., EOS)
# before reaching the absolute model length limit.
assert num_total_tokens <= max_model_len