Files
vllm/vllm/v1/attention/backends/mla/flashattn_mla.py
2025-10-16 21:40:25 +00:00

310 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import ClassVar
import torch
from vllm import envs
from vllm.attention.backends.abstract import (
AttentionLayer,
AttentionType,
is_quantized_kv_cache,
)
from vllm.attention.utils.fa_utils import (
flash_attn_supports_mla,
get_flash_attn_version,
)
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.layers.batch_invariant import (
vllm_is_batch_invariant,
)
from vllm.v1.attention.backends.mla.common import (
MLACommonBackend,
MLACommonDecodeMetadata,
MLACommonImpl,
MLACommonMetadata,
MLACommonMetadataBuilder,
QueryLenSupport,
)
from vllm.v1.attention.backends.utils import AttentionCGSupport
from vllm.v1.kv_cache_interface import AttentionSpec
from vllm.vllm_flash_attn import flash_attn_varlen_func, get_scheduler_metadata
logger = init_logger(__name__)
class FlashAttnMLABackend(MLACommonBackend):
@staticmethod
def get_name() -> str:
return "FLASH_ATTN_MLA"
@staticmethod
def get_metadata_cls() -> type["FlashAttnMLAMetadata"]:
return FlashAttnMLAMetadata
@staticmethod
def get_builder_cls() -> type["FlashAttnMLAMetadataBuilder"]:
return FlashAttnMLAMetadataBuilder
@staticmethod
def get_impl_cls() -> type["FlashAttnMLAImpl"]:
return FlashAttnMLAImpl
@dataclass
class FlashAttnMLADecodeMetadata(MLACommonDecodeMetadata):
query_start_loc: torch.Tensor
max_query_len: int
max_seq_len: int
scheduler_metadata: torch.Tensor | None = None
max_num_splits: int = 0
@dataclass
class FlashAttnMLAMetadata(MLACommonMetadata[FlashAttnMLADecodeMetadata]):
pass
class FlashAttnMLAMetadataBuilder(MLACommonMetadataBuilder[FlashAttnMLAMetadata]):
cudagraph_support: ClassVar[AttentionCGSupport] = AttentionCGSupport.UNIFORM_BATCH
query_len_support: ClassVar[QueryLenSupport] = QueryLenSupport.VARLEN
reorder_batch_threshold: int = 512 # process small prefills with decode pathway
def __init__(
self,
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: torch.device,
):
super().__init__(
kv_cache_spec, layer_names, vllm_config, device, FlashAttnMLAMetadata
)
self.max_num_splits = 0 # No upper bound on the number of splits.
self.fa_aot_schedule = get_flash_attn_version() == 3
self.use_full_cuda_graph = (
self.compilation_config.cudagraph_mode.has_full_cudagraphs()
)
if self.use_full_cuda_graph and self.fa_aot_schedule:
self.max_cudagraph_size = self.compilation_config.max_capture_size
if self.max_cudagraph_size > 992:
# This condition derives from FA3's internal heuristic.
# TODO(woosuk): Support larger cudagraph sizes.
raise ValueError(
"Capture size larger than 992 is not supported for full cuda graph."
)
self.scheduler_metadata = torch.zeros(
vllm_config.scheduler_config.max_num_seqs + 1,
dtype=torch.int32,
device=self.device,
)
# When using cuda graph, we need to set the upper bound of the
# number of splits so that large enough intermediate buffers are
# pre-allocated during capture.
self.max_num_splits = envs.VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH
if vllm_is_batch_invariant():
self.max_num_splits = 1
def _schedule_decode(
self, num_reqs, cu_query_lens, max_query_len, seqlens, max_seq_len, causal
):
if self.fa_aot_schedule:
return get_scheduler_metadata(
batch_size=num_reqs,
max_seqlen_q=max_query_len,
max_seqlen_k=max_seq_len,
num_heads_q=self.num_heads * self.dcp_world_size,
num_heads_kv=1,
headdim=self.mla_dims.qk_rope_head_dim,
cache_seqlens=seqlens,
qkv_dtype=self.kv_cache_spec.dtype,
headdim_v=self.mla_dims.kv_lora_rank,
page_size=self.page_size,
cu_seqlens_q=cu_query_lens,
causal=causal,
num_splits=self.max_num_splits,
)
return None
def _build_decode(
self,
block_table_tensor: torch.Tensor,
seq_lens_cpu: torch.Tensor,
seq_lens_device: torch.Tensor,
query_start_loc_cpu: torch.Tensor,
query_start_loc_device: torch.Tensor,
num_decode_tokens: int,
dcp_tot_seq_lens_device: torch.Tensor | None,
) -> FlashAttnMLADecodeMetadata:
query_lens_cpu = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1]
max_query_len = query_lens_cpu.max().item()
max_seq_len = seq_lens_device.max().item()
scheduler_metadata = self._schedule_decode(
num_reqs=seq_lens_cpu.numel(),
cu_query_lens=query_start_loc_device,
max_query_len=max_query_len,
seqlens=seq_lens_device,
max_seq_len=max_seq_len,
causal=True,
)
# For FA3 + full cudagraph
max_num_splits = 0
if self.use_full_cuda_graph and scheduler_metadata is not None:
n = scheduler_metadata.shape[0]
# Ensure the persistent buffer is large enough
assert n <= self.scheduler_metadata.shape[0], (
f"Scheduler metadata size {n} exceeds buffer size "
+ f"{self.scheduler_metadata.shape[0]}"
)
self.scheduler_metadata[:n] = scheduler_metadata
# NOTE(woosuk): We should zero out the rest of the scheduler
# metadata to guarantee the correctness. Otherwise, some thread
# blocks may use the invalid scheduler metadata and overwrite the
# output buffer.
self.scheduler_metadata[n:] = 0
scheduler_metadata = self.scheduler_metadata[:n]
if num_decode_tokens <= self.max_cudagraph_size:
# NOTE(woosuk): Setting num_splits > 1 may increase the memory
# usage, because the intermediate buffers of size [num_splits,
# num_heads, num_tokens, head_size] are allocated. Therefore,
# we only set num_splits when using cuda graphs.
max_num_splits = self.max_num_splits
if vllm_is_batch_invariant():
max_num_splits = 1
metadata = FlashAttnMLADecodeMetadata(
block_table=block_table_tensor,
seq_lens=seq_lens_device,
query_start_loc=query_start_loc_device,
max_query_len=max_query_len,
max_seq_len=max_seq_len,
scheduler_metadata=scheduler_metadata,
max_num_splits=max_num_splits,
dcp_tot_seq_lens=dcp_tot_seq_lens_device,
)
return metadata
class FlashAttnMLAImpl(MLACommonImpl[FlashAttnMLAMetadata]):
can_return_lse_for_decode: bool = True
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: list[float] | None,
sliding_window: int | None,
kv_cache_dtype: str,
logits_soft_cap: float | None,
attn_type: str,
kv_sharing_target_layer_name: str | None,
# MLA Specific Arguments
**mla_args,
) -> None:
super().__init__(
num_heads,
head_size,
scale,
num_kv_heads,
alibi_slopes,
sliding_window,
kv_cache_dtype,
logits_soft_cap,
attn_type,
kv_sharing_target_layer_name,
**mla_args,
)
assert flash_attn_supports_mla(), "FlashAttnMLA is not supported on this device"
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"FlashAttnMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, logits_soft_cap"
)
if attn_type != AttentionType.DECODER:
raise NotImplementedError(
"Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"FlashAttnMLAImpl"
)
if is_quantized_kv_cache(self.kv_cache_dtype):
raise NotImplementedError(
"FlashAttnMLA V1 with FP8 KV cache not yet supported"
)
def _forward_decode(
self,
q: torch.Tensor | tuple[torch.Tensor, torch.Tensor],
kv_c_and_k_pe_cache: torch.Tensor,
attn_metadata: FlashAttnMLAMetadata,
layer: AttentionLayer,
) -> tuple[torch.Tensor, torch.Tensor | None]:
assert kv_c_and_k_pe_cache.numel() > 0
assert attn_metadata.decode is not None
if type(q) is tuple:
q_nope, q_pe = q
else:
q_nope, q_pe = torch.split(
q, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
if self.kv_cache_dtype.startswith("fp8"):
raise NotImplementedError("FP8 FlashAttention MLA not yet supported")
kv_c_cache = kv_c_and_k_pe_cache[..., : self.kv_lora_rank]
k_pe_cache = kv_c_and_k_pe_cache[..., self.kv_lora_rank :]
# NOTE(matt): During CUDA graph capture, max_query_len can be 0, but the
# kernel uses this to calculate grid dimensions. Ensure it's at least 1
# to prevent invalid grid configuration during graph capture.
max_seqlen_q = max(attn_metadata.decode.max_query_len, 1)
attn_out = flash_attn_varlen_func(
q=q_pe,
k=k_pe_cache.unsqueeze(-2), # Add head dim of 1
v=kv_c_cache.unsqueeze(-2), # Add head dim of 1
q_v=q_nope,
max_seqlen_q=max_seqlen_q,
cu_seqlens_q=attn_metadata.decode.query_start_loc,
max_seqlen_k=attn_metadata.decode.max_seq_len,
seqused_k=attn_metadata.decode.seq_lens,
block_table=attn_metadata.decode.block_table,
softmax_scale=self.scale,
causal=True,
return_softmax_lse=self.need_to_return_lse_for_decode,
fa_version=3, # only version 3 is supported
scheduler_metadata=attn_metadata.decode.scheduler_metadata,
num_splits=attn_metadata.decode.max_num_splits,
cp_world_size=self.dcp_world_size,
cp_rank=self.dcp_rank,
cp_tot_seqused_k=attn_metadata.decode.dcp_tot_seq_lens,
)
if self.need_to_return_lse_for_decode:
o, lse = attn_out
# FA returns LSE in shape [ H, B ] but DCP wants [ B, H ]
return o, lse.transpose(0, 1) # [ H, B ] -> [ B, H ]
else:
o = attn_out
return o, None