Files
vllm/benchmarks/kernels/benchmark_w8a8_block_fp8.py
HAIAI aee76334d9 [amd_dev] branch rebase (#25753)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: Lucas Kabela <lucaskabela@meta.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: Boyuan Feng <boyuan@meta.com>
Signed-off-by: Boyuan Feng <fby.1994@gmail.com>
Signed-off-by: boyuanfeng <boyuan@meta.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: JartX <sagformas@epdcenter.es>
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Signed-off-by: Manoel Marques <manoel.marques@ibm.com>
Signed-off-by: Manoel Marques <manoelmrqs@gmail.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: pengdrumli <pengdrumli@tencent.com>
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Huamin Li <3ericli@gmail.com>
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
Signed-off-by: Yang <lymailforjob@gmail.com>
Signed-off-by: Debolina Roy <debroy@redhat.com>
Signed-off-by: David Chen <530634352@qq.com>
Signed-off-by: wangzi <3220100013@zju.edu.cn>
Signed-off-by: Eldar Kurtic <8884008+eldarkurtic@users.noreply.github.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Yizhou Liu <liu_yizhou@outlook.com>
Signed-off-by: Sara Kokkila Schumacher <saraks@ibm.com>
Signed-off-by: Csrayz <jover@cmbchina.com>
Signed-off-by: ivyilike <pww123@cmbchina.com>
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
Signed-off-by: Bowen Wang <abmfy@icloud.com>
Signed-off-by: qqma <qqma@amazon.com>
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: luka <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: Or Ozeri <oro@il.ibm.com>
Signed-off-by: Johnny Yang <johnnyyang@google.com>
Signed-off-by: Alec Solder <alecs@fb.com>
Signed-off-by: Alec S <10566873+alecsolder@users.noreply.github.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: liuye.hj <liuye.hj@alibaba-inc.com>
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Signed-off-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Signed-off-by: Ming Yang <minos.future@gmail.com>
Signed-off-by: Zhikaiiii <1658973216@qq.com>
Signed-off-by: Andreas Hartel <andreas.hartel@aleph-alpha.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: wuxibin <wuxibin@bytedance.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: Peter Pan <peter.pan@daocloud.io>
Signed-off-by: Nicolò Lucchesi<nicolo.lucchesi@gmail.com>
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: Bill Nell <bnell@redhat.com>
Signed-off-by: Shreeasish Kumar <shreeasish@rivosinc.com>
Signed-off-by: Weida Hong <wdhongtw@google.com>
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Signed-off-by: Hashem Hashemi <hashem.hashemi@amd.com>
Signed-off-by: Hashem Hashemi <159079214+amd-hhashemi@users.noreply.github.com>
Signed-off-by: Amir Samani <asamani@nvidia.com>
Signed-off-by: ElizaWszola <elizaw.9289@gmail.com>
Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com>
Signed-off-by: ilmarkov <markovilya197@gmail.com>
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Signed-off-by: rouchenzi <ruochenwen@gmail.com>
Signed-off-by: rouchenzi <40842833+rouchenzi@users.noreply.github.com>
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>
Signed-off-by: Corey Lowman <clowman1993@gmail.com>
Signed-off-by: jpvillam <jpvillam@amd.com>
Signed-off-by: dougbtv <dosmith@redhat.com>
Signed-off-by: Chenxi Yang <cxyang@fb.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
Signed-off-by: Yan Lu <luyan@nvidia.com>
Signed-off-by: baxingpiaochong <771405853@qq.com>
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
Signed-off-by: Nikhil Gupta <nikhil.gupta2@arm.com>
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Signed-off-by: Chengji Yao <chengjiyao@google.com>
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Signed-off-by: Jackmin801 <ongjackm@gmail.com>
Signed-off-by: Jonas M. Kübler <44084297+jmkuebler@users.noreply.github.com>
Signed-off-by: taohui <taohui3@gmail.com>
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
Signed-off-by: Shu Wang <shuw@nvidia.com>
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
Signed-off-by: Wei Wei <wwei6@meta.com>
Signed-off-by: Saman Keon <samanamp@outlook.com>
Signed-off-by: yangxurui <yangxurui@meituan.com>
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
Signed-off-by: courage17340 <courage17340@163.com>
Signed-off-by: Jacob Kahn <jacobkahn1@gmail.com>
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
Signed-off-by: zxw <1020938856@qq.com>
Signed-off-by: wang.yuqi <noooop@126.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Signed-off-by: chenlang <chen.lang5@zte.com.cn>
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
Signed-off-by: AlonKejzman <alonkeizman@gmail.com>
Signed-off-by: Tao Hui <taohui3@gmail.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Signed-off-by: Eugene Khvedchenya <ekhvedchenya@gmail.com>
Signed-off-by: yiting.jiang <yiting.jiang@daocloud.io>
Signed-off-by: xaguilar <Xavier.AguilarFruto@amd.com>
Signed-off-by: Iceber Gu <caiwei95@hotmail.com>
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
Signed-off-by: Icey <1790571317@qq.com>
Signed-off-by: 许文卿 <xwq391974@alibaba-inc.com>
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Lucas Kabela <lucasakabela@gmail.com>
Co-authored-by: Maximilien de Bayser <mbayser@br.ibm.com>
Co-authored-by: Andrew Sansom <andrew@protopia.ai>
Co-authored-by: Boyuan Feng <boyuan@meta.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: JartX <sagformas@epdcenter.es>
Co-authored-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
Co-authored-by: xin.li <xin.li@daocloud.io>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Wenlong Wang <wangwenlong2755@gmail.com>
Co-authored-by: Manoel Marques <manoelmrqs@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: lirong <56789630+lirong-lirong@users.noreply.github.com>
Co-authored-by: Michael Yao <haifeng.yao@daocloud.io>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Huamin Li <3ericli@gmail.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
Co-authored-by: Simon Danielsson <70206058+simondanielsson@users.noreply.github.com>
Co-authored-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Yang Liu <127183760+KKSK-DON@users.noreply.github.com>
Co-authored-by: Deboleina <debroy@redhat.com>
Co-authored-by: yinz-aizip <yinz@aizip.ai>
Co-authored-by: WeiQing Chen <40507679+david6666666@users.noreply.github.com>
Co-authored-by: wangzi <3220100013@zju.edu.cn>
Co-authored-by: Eldar Kurtić <8884008+eldarkurtic@users.noreply.github.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Co-authored-by: Yizhou <136800916+yiz-liu@users.noreply.github.com>
Co-authored-by: Sara-KS <50249410+Sara-KS@users.noreply.github.com>
Co-authored-by: Csrayz <jover@cmbchina.com>
Co-authored-by: ivyilike <pww123@cmbchina.com>
Co-authored-by: Burkhard Ringlein <ngl@zurich.ibm.com>
Co-authored-by: Bowen Wang <abmfy@icloud.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Daisy-Ma-coder <daisy.ma.0117@gmail.com>
Co-authored-by: qqma <qqma@amazon.com>
Co-authored-by: ElizaWszola <ewszola@redhat.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Or Ozeri <oro@il.ibm.com>
Co-authored-by: Johnny Yang <24908445+jcyang43@users.noreply.github.com>
Co-authored-by: Chengji Yao <chengjiyao@google.com>
Co-authored-by: Alec S <10566873+alecsolder@users.noreply.github.com>
Co-authored-by: Alec Solder <alecs@fb.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Chris Bamford <chrisbam4d@gmail.com>
Co-authored-by: Alexander Matveev <59768536+alexm-redhat@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: JJJYmmm <92386084+JJJYmmm@users.noreply.github.com>
Co-authored-by: liuye.hj <liuye.hj@alibaba-inc.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
Co-authored-by: Varun Sundar Rabindranath <varunsundar08@gmail.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Ming Yang <yming@meta.com>
Co-authored-by: Zhikaiiii <55917203+Zhikaiiii@users.noreply.github.com>
Co-authored-by: Andreas Hartel <andreas@hartel.me>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: Joel <wuxibin89@163.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Mark McLoughlin <markmc@redhat.com>
Co-authored-by: Peter Pan <peter.pan@daocloud.io>
Co-authored-by: Nicolò Lucchesi <nicolo.lucchesi@gmail.com>
Co-authored-by: Fanli Lin <fanli.lin@intel.com>
Co-authored-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: bnellnm <49004751+bnellnm@users.noreply.github.com>
Co-authored-by: rivos-shreeasish <shreeasish@rivosinc.com>
Co-authored-by: Chih-Chieh Yang <chih.chieh.yang@ibm.com>
Co-authored-by: Weida Hong <wdhongtw@gmail.com>
Co-authored-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Hashem Hashemi <159079214+amd-hhashemi@users.noreply.github.com>
Co-authored-by: Amir Samani <samani@ualberta.ca>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
Co-authored-by: jiahanc <173873397+jiahanc@users.noreply.github.com>
Co-authored-by: Ilya Markov <markovilya197@gmail.com>
Co-authored-by: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com>
Co-authored-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Co-authored-by: rouchenzi <40842833+rouchenzi@users.noreply.github.com>
Co-authored-by: Andrew Xia <axia@meta.com>
Co-authored-by: kourosh hakhamaneshi <31483498+kouroshHakha@users.noreply.github.com>
Co-authored-by: Corey Lowman <clowman1993@gmail.com>
Co-authored-by: Juan Villamizar <100237675+jpvillam-amd@users.noreply.github.com>
Co-authored-by: jpvillam <jpvillam@amd.com>
Co-authored-by: Doug Smith <dosmith@redhat.com>
Co-authored-by: Chenxi Yang <cxyang@cs.utexas.edu>
Co-authored-by: Chenxi Yang <cxyang@fb.com>
Co-authored-by: ahao-anyscale <ahao@anyscale.com>
Co-authored-by: 0xNullPath <luyanfcp@foxmail.com>
Co-authored-by: baxingpiaochong <771405853@qq.com>
Co-authored-by: Benjamin Chislett <bchislett@nvidia.com>
Co-authored-by: Kyle Sayers <kylesayrs@gmail.com>
Co-authored-by: Nikhil Gupta <nikhil.gupta2@arm.com>
Co-authored-by: Yong Hoon Shin <48474650+sarckk@users.noreply.github.com>
Co-authored-by: lhsjohn <huashuoli@tencent.com>
Co-authored-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
Co-authored-by: Jackmin801 <56836461+Jackmin801@users.noreply.github.com>
Co-authored-by: Jonas M. Kübler <44084297+jmkuebler@users.noreply.github.com>
Co-authored-by: Tao Hui <taohui3@gmail.com>
Co-authored-by: rongfu.leng <rongfu.leng@daocloud.io>
Co-authored-by: Shu Wang <shuw@nvidia.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Duncan Moss <djm.moss@gmail.com>
Co-authored-by: Shiyan Deng <dsy842974287@meta.com>
Co-authored-by: Wei Wei <wwei6@meta.com>
Co-authored-by: Saman A. Pour <samanamp@outlook.com>
Co-authored-by: XuruiYang <530534756@qq.com>
Co-authored-by: yangxurui <yangxurui@meituan.com>
Co-authored-by: Nicole LiHui 🥜 <nicolelihui@outlook.com>
Co-authored-by: courage17340 <courage17340@users.noreply.github.com>
Co-authored-by: Jacob Kahn <jacobkahn1@gmail.com>
Co-authored-by: Nicole LiHui 🥜 <nicole.li@daocloud.io>
Co-authored-by: Fadi Arafeh <115173828+fadara01@users.noreply.github.com>
Co-authored-by: Agata Dobrzyniewicz <160237065+adobrzyn@users.noreply.github.com>
Co-authored-by: yyzxw <34639446+yyzxw@users.noreply.github.com>
Co-authored-by: wang.yuqi <noooop@126.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: chenlang <chen.lang5@zte.com.cn>
Co-authored-by: chenlang <10346245@zte.com.cn>
Co-authored-by: AlonKejzman <alonkeizman@gmail.com>
Co-authored-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: Aleksandr Malyshev <164964928+maleksan85@users.noreply.github.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Doug Lehr <douglehr@amd.com>
Co-authored-by: Eugene Khvedchenya <ekhvedchenya@gmail.com>
Co-authored-by: yitingdc <59356937+yitingdc@users.noreply.github.com>
Co-authored-by: xaguilar-amd <xavier.aguilarfruto@amd.com>
Co-authored-by: Iceber Gu <caiwei95@hotmail.com>
Co-authored-by: Tao He <linzhu.ht@alibaba-inc.com>
Co-authored-by: Icey <1790571317@qq.com>
Co-authored-by: Xu Wenqing <121550081+Xu-Wenqing@users.noreply.github.com>
Co-authored-by: Chih-Chieh Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: RishiAstra <40644327+RishiAstra@users.noreply.github.com>
2025-09-26 17:14:31 +01:00

416 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from sglang quantization/tuning_block_wise_kernel.py
import argparse
import json
import multiprocessing as mp
import os
import time
from datetime import datetime
from typing import Any
import torch
from tqdm import tqdm
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul,
)
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import FlexibleArgumentParser
mp.set_start_method("spawn", force=True)
assert current_platform.is_cuda(), (
"Only support tune w8a8 block fp8 kernel on CUDA device."
)
DTYPE_MAP = {
"float32": torch.float32,
"float16": torch.float16,
"half": torch.half,
"bfloat16": torch.bfloat16,
}
def w8a8_block_matmul(
A: torch.Tensor,
B: torch.Tensor,
As: torch.Tensor,
Bs: torch.Tensor,
block_size: list[int],
config: dict[str, Any],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
"""This function performs matrix multiplication with
block-wise quantization.
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
The output is returned in the specified `output_dtype`.
Args:
A: The input tensor, e.g., activation.
B: The input tensor, e.g., weight.
As: The per-token-group quantization scale for `A`.
Bs: The per-block quantization scale for `B`.
block_size: The block size for per-block quantization.
It should be 2-dim, e.g., [128, 128].
output_dtype: The dtype of the returned tensor.
Returns:
torch.Tensor: The result of matmul.
"""
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert A.shape[-1] == B.shape[-1]
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
M = A.numel() // A.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
N, K = B.shape
assert triton.cdiv(N, block_n) == Bs.shape[0]
assert triton.cdiv(K, block_k) == Bs.shape[1]
C_shape = A.shape[:-1] + (N,)
C = A.new_empty(C_shape, dtype=output_dtype)
def grid(META):
return (
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
)
if A.dtype == torch.float8_e4m3fn:
kernel = _w8a8_block_fp8_matmul
else:
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
kernel[grid](
A,
B,
C,
As,
Bs,
M,
N,
K,
block_n,
block_k,
A.stride(-2),
A.stride(-1),
B.stride(1),
B.stride(0),
C.stride(-2),
C.stride(-1),
As.stride(-2),
As.stride(-1),
Bs.stride(1),
Bs.stride(0),
**config,
)
return C
def get_configs_compute_bound():
configs = []
for num_stages in [2, 3, 4, 5]:
for block_m in [16, 32, 64, 128, 256]:
for block_k in [64, 128]:
for block_n in [32, 64, 128, 256]:
for num_warps in [4, 8]:
for group_size in [1, 16, 32, 64]:
configs.append(
{
"BLOCK_SIZE_M": block_m,
"BLOCK_SIZE_N": block_n,
"BLOCK_SIZE_K": block_k,
"GROUP_SIZE_M": group_size,
"num_warps": num_warps,
"num_stages": num_stages,
}
)
return configs
def get_weight_shapes(tp_size):
# NOTE(HandH1998): The weight shapes only works for DeepSeek-V3.
# Modify them, if you tune for another different model.
# cannot TP
total = [
(512 + 64, 7168),
(2112, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(7168, 16384),
(7168, 18432),
]
# N can TP
n_tp = [
(18432 * 2, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(24576, 1536),
(12288, 7168),
(4096, 7168),
]
# K can TP
k_tp = [(7168, 18432), (7168, 16384), (7168, 2048)]
weight_shapes = []
for t in total:
weight_shapes.append(t)
for n_t in n_tp:
new_t = (n_t[0] // tp_size, n_t[1])
weight_shapes.append(new_t)
for k_t in k_tp:
new_t = (k_t[0], k_t[1] // tp_size)
weight_shapes.append(new_t)
return weight_shapes
def benchmark_config(
A, B, As, Bs, block_size, config, out_dtype=torch.float16, num_iters=10
):
def run():
w8a8_block_matmul(A, B, As, Bs, block_size, config, out_dtype)
torch.cuda.synchronize()
# JIT complication & warmup
for _ in range(5):
run()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
torch.cuda.synchronize()
start_event.record()
run()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
return avg
def tune(M, N, K, block_size, out_dtype, search_space, input_type):
factor_for_scale = 1e-2
if input_type == "fp8":
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
A_fp32 = (
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
)
A = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
)
B = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
else:
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32, device="cuda") * factor_for_scale
Bs = (
torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda")
* factor_for_scale
)
best_config = None
best_time = float("inf")
for config in tqdm(search_space):
try:
kernel_time = benchmark_config(
A,
B,
As,
Bs,
block_size,
config,
out_dtype,
num_iters=10,
)
except triton.runtime.autotuner.OutOfResources:
# Some configurations may be invalid and fail to compile.
continue
if kernel_time < best_time:
best_time = kernel_time
best_config = config
now = datetime.now()
print(f"{now.ctime()}] Completed tuning for batch_size={M}")
assert best_config is not None
return best_config
def save_configs(
N,
K,
block_n,
block_k,
configs,
save_path,
input_type="fp8",
) -> None:
os.makedirs(save_path, exist_ok=True)
device_name = current_platform.get_device_name().replace(" ", "_")
json_file_name = (
f"N={N},K={K},device_name={device_name},dtype={input_type}_w8a8,"
f"block_shape=[{block_n},{block_k}].json"
)
config_file_path = os.path.join(save_path, json_file_name)
print(f"Writing best config to {config_file_path}...")
with open(config_file_path, "w") as f:
json.dump(configs, f, indent=4)
f.write("\n")
def tune_on_gpu(args_dict):
"""Run tuning on a specific GPU."""
gpu_id = args_dict["gpu_id"]
batch_sizes = args_dict["batch_sizes"]
weight_shapes = args_dict["weight_shapes"]
args = args_dict["args"]
torch.cuda.set_device(gpu_id)
print(f"Starting tuning on GPU {gpu_id} with batch sizes {batch_sizes}")
block_n = args.block_n
block_k = args.block_k
out_dtype = DTYPE_MAP[args.out_dtype]
save_path = args.save_path
input_type = args.input_type
search_space = get_configs_compute_bound()
search_space = [
config for config in search_space if block_k % config["BLOCK_SIZE_K"] == 0
]
start = time.time()
for shape in tqdm(weight_shapes, desc=f"GPU {gpu_id} - Shapes"):
N, K = shape[0], shape[1]
print(f"[GPU {gpu_id}] Tune for weight shape of `N: {N}, K: {K}`")
benchmark_results = [
tune(
batch_size,
N,
K,
[block_n, block_k],
out_dtype,
search_space,
input_type,
)
for batch_size in tqdm(batch_sizes, desc=f"GPU {gpu_id} - Batch sizes")
]
best_configs = {M: config for M, config in zip(batch_sizes, benchmark_results)}
save_configs(N, K, block_n, block_k, best_configs, save_path, input_type)
end = time.time()
print(f"Tuning on GPU {gpu_id} took {end - start:.2f} seconds")
def distribute_batch_sizes(batch_sizes, num_gpus):
"""Distribute batch sizes across available GPUs."""
batches_per_gpu = []
for i in range(num_gpus):
start_idx = i * len(batch_sizes) // num_gpus
end_idx = (i + 1) * len(batch_sizes) // num_gpus
batches_per_gpu.append(batch_sizes[start_idx:end_idx])
return batches_per_gpu
def main(args):
print(args)
num_gpus = torch.cuda.device_count()
if num_gpus == 0:
raise RuntimeError("No GPU available for tuning")
print(f"Found {num_gpus} GPUs for parallel tuning")
torch.cuda.init()
if args.batch_size is None:
batch_sizes = [
1,
2,
4,
8,
16,
24,
32,
48,
64,
96,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]
else:
batch_sizes = [args.batch_size]
num_gpus = 1 # If only one batch size, use only one GPU
weight_shapes = get_weight_shapes(args.tp_size)
batches_per_gpu = distribute_batch_sizes(batch_sizes, num_gpus)
process_args = []
for gpu_id in range(num_gpus):
process_args.append(
{
"gpu_id": gpu_id,
"batch_sizes": batches_per_gpu[gpu_id],
"weight_shapes": weight_shapes, # Each GPU processes all weight shapes
"args": args,
}
)
ctx = mp.get_context("spawn")
with ctx.Pool(num_gpus) as pool:
pool.map(tune_on_gpu, process_args)
print("Multi-GPU tuning completed")
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="""
Tune triton w8a8 block fp8 for DeepSeek-V3/DeepSeek-R1:
python3 benchmark_w8a8_block_fp8.py --tp-size 8 --input-type fp8
Then copy to model_executor/layers/quantization/utils/configs
""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument("--tp-size", "-tp", type=int, default=8)
parser.add_argument("--input-type", type=str, choices=["fp8"], default="fp8")
parser.add_argument(
"--out-dtype",
type=str,
choices=["float32", "float16", "bfloat16", "half"],
default="float16",
)
parser.add_argument("--block-n", type=int, default=128)
parser.add_argument("--block-k", type=int, default=128)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--save-path", type=str, default="./")
args = parser.parse_args()
main(args)