Files
vllm/vllm/model_executor/models/plamo2.py
Zhuohan Li 3fd66b1e73 [Misc] Remove unused virtual engine flag
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-10-16 23:04:05 -07:00

986 lines
37 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only PLaMo2 model."""
from collections.abc import Iterable
from itertools import islice
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention.backends.abstract import AttentionMetadata
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig, get_current_vllm_config
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.abstract import MambaBase
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator,
MambaStateShapeCalculator,
)
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn,
causal_conv1d_update,
)
from vllm.model_executor.layers.mamba.ops.mamba_ssm import selective_state_update
from vllm.model_executor.layers.mamba.ops.ssd_combined import (
mamba_chunk_scan_combined_varlen,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
composed_weight_loader,
default_weight_loader,
sharded_weight_loader,
)
from vllm.model_executor.models.interfaces import HasInnerState, IsHybrid, SupportsPP
from vllm.model_executor.models.utils import (
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
from vllm.model_executor.utils import set_weight_attrs
from vllm.sequence import IntermediateTensors
from vllm.utils import direct_register_custom_op
from vllm.v1.attention.backends.mamba2_attn import Mamba2AttentionMetadata
# Only used for type hinting.
class Plamo2Config(PretrainedConfig): # type: ignore
model_type: str = "plamo2"
hidden_size: int
num_hidden_layers: int
rms_norm_eps: float
# Attention
num_attention_heads: int
hidden_size_per_head: int
num_key_value_heads: int
# Mamba
mamba_d_state: int
mamba_d_conv: int
mamba_num_heads: int
mamba_step: int
# MLP
intermediate_size: int
# Tokenizer
vocab_size: int
def is_mamba(config: Plamo2Config, i: int) -> bool:
assert config.mamba_step > 1
if config.num_hidden_layers <= (config.mamba_step // 2):
# use attention in last layer
return i != config.num_hidden_layers - 1
return (i % config.mamba_step) != (config.mamba_step // 2)
# Adapted from:
# vllm.model_executor.layers.mamba.mamba_mixer2.MambaMixer2
# transformers.models.mamba.modeling_mamba.MambaMixer
@CustomOp.register(name="plamo2_mamba_mixer")
class Plamo2MambaMixer(MambaBase, CustomOp):
def __init__(self, vllm_config: VllmConfig, *, prefix: str = "", **kwargs) -> None:
super().__init__()
self.config = vllm_config.model_config.hf_config
self.cache_config = vllm_config.cache_config
self.model_config = vllm_config.model_config
self.quant_config = vllm_config.quant_config
self.hidden_size = self.config.hidden_size
self.ssm_state_size = self.config.mamba_d_state
self.conv_kernel_size = self.config.mamba_d_conv
self.intermediate_size = (
self.config.mamba_num_heads * self.config.hidden_size_per_head
)
self.tp_size = get_tensor_model_parallel_world_size()
self.head_dim = self.config.hidden_size_per_head
self.num_heads = self.config.mamba_num_heads
self.time_step_rank = max(64, self.hidden_size // 16)
self.conv1d = ColumnParallelLinear(
input_size=self.conv_kernel_size,
output_size=self.intermediate_size,
bias=False,
prefix=f"{prefix}.conv1d",
return_bias=False,
)
# unsqueeze to fit conv1d weights shape into the linear weights shape.
# Can't do this in `weight_loader` since it already exists in
# `ColumnParallelLinear` and `set_weight_attrs`
# doesn't allow to override it
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
self.in_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=self.quant_config,
prefix=f"{prefix}.in_proj",
return_bias=False,
)
# selective projection used to make dt, B and C input dependent
self.bcdt_proj = RowParallelLinear(
self.intermediate_size,
self.time_step_rank + self.ssm_state_size * 2,
bias=False,
quant_config=self.quant_config,
prefix=f"{prefix}.bcdt_proj",
return_bias=False,
)
# time step projection (discretization) -
# In the forward we need to apply dt_proj without the bias,
# as the bias is added in the selective scan kernel.
self.dt_proj = ColumnParallelLinear(
self.time_step_rank,
self.num_heads,
bias=False,
quant_config=self.quant_config,
prefix=f"{prefix}.dt_proj",
return_bias=False,
)
self.A = nn.Parameter(
torch.empty(
divide(self.num_heads, self.tp_size),
dtype=torch.float32,
)
)
self.D = nn.Parameter(torch.ones(divide(self.num_heads, self.tp_size)))
self.dt_bias = nn.Parameter(torch.ones(divide(self.num_heads, self.tp_size)))
set_weight_attrs(self.D, {"weight_loader": sharded_weight_loader(0)})
a_weight_loader = composed_weight_loader(
sharded_weight_loader(0), lambda x: -torch.exp(x.float())
)
set_weight_attrs(self.A, {"weight_loader": a_weight_loader})
set_weight_attrs(self.dt_bias, {"weight_loader": sharded_weight_loader(0)})
self.out_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
input_is_parallel=True,
quant_config=self.quant_config,
prefix=f"{prefix}.out_proj",
return_bias=False,
)
# The activation function is fixed to SiLU.
self.activation = "silu"
self.dt_norm = RMSNorm(self.time_step_rank, eps=self.config.rms_norm_eps)
self.B_norm = RMSNorm(self.ssm_state_size, eps=self.config.rms_norm_eps)
self.C_norm = RMSNorm(self.ssm_state_size, eps=self.config.rms_norm_eps)
self.chunk_size = self.config.mamba_chunk_size
compilation_config = get_current_vllm_config().compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError(f"Duplicate layer name: {prefix}")
compilation_config.static_forward_context[prefix] = self
# The tuple is (conv_state, ssm_state)
self.kv_cache = (torch.tensor([]), torch.tensor([]))
assert self.chunk_size != -1, "chunk_size must be set for v1"
self.prefix = prefix
def _project_ssm_parameters(self, hidden_states):
ssm_parameters = self.bcdt_proj(hidden_states)
B, C, time_step = torch.split(
ssm_parameters,
[self.ssm_state_size, self.ssm_state_size, self.time_step_rank],
dim=-1,
)
# vllm._custom_ops.rms_norm requires contiguous input tensors.
time_step = self.dt_norm(time_step.contiguous())
B = self.B_norm(B.contiguous())
C = self.C_norm(C.contiguous())
dt = self.dt_proj(time_step)
return B, C, dt
def forward_native(
self,
hidden_states: torch.Tensor,
output: torch.Tensor,
**kwargs,
):
pass
def forward(
self,
hidden_states: torch.Tensor,
output: torch.Tensor,
**kwargs,
):
torch.ops.vllm.plamo2_mamba_mixer(
hidden_states,
output,
self.prefix,
)
def forward_cuda(
self,
hidden_states: torch.Tensor,
output: torch.Tensor,
**kwargs,
):
forward_context = get_forward_context()
# attn_metadata contains metadata necessary for the mamba2 triton
# kernels to operate in continuous batching and in chunked prefill
# modes; they are computed at top-level model forward since they
# stay the same and reused for all mamba layers in the same iteration
attn_metadata: AttentionMetadata = forward_context.attn_metadata
if attn_metadata is not None:
assert isinstance(attn_metadata, dict)
attn_metadata = attn_metadata[self.prefix]
assert isinstance(attn_metadata, Mamba2AttentionMetadata)
# conv_state = (..., dim, width-1) yet contiguous along 'dim'
conv_state = self.kv_cache[0].transpose(-1, -2)
ssm_state = self.kv_cache[1]
state_indices_tensor = attn_metadata.state_indices_tensor
has_initial_states_p = attn_metadata.has_initial_states_p
prep_initial_states = attn_metadata.prep_initial_states
chunk_size = attn_metadata.chunk_size
seq_idx_p = attn_metadata.seq_idx_p
query_start_loc_p = attn_metadata.query_start_loc_p
cu_chunk_seqlen_p = attn_metadata.cu_chunk_seqlen_p
last_chunk_indices_p = attn_metadata.last_chunk_indices_p
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states)
gate, hidden_states = projected_states.chunk(2, dim=-1)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(
self.conv1d.weight.size(0), self.conv1d.weight.size(2)
)
if attn_metadata is None:
# profile run
hidden_states = (
hidden_states.transpose(0, 1).clone().transpose(0, 1)
).contiguous()
output[:] = self.out_proj(hidden_states)
return
num_prefills = attn_metadata.num_prefills # request count
num_decodes = attn_metadata.num_decode_tokens # token count (=request)
num_prefill_tokens = attn_metadata.num_prefill_tokens # token count
has_prefill = num_prefills > 0
has_decode = num_decodes > 0
num_actual_tokens = num_prefill_tokens + num_decodes
# NOTE: V0 put prefill before decode, v1 puts decode before prefill
# Separate prefill and decode by splitting varlen input
# Split along token dimension
hidden_states_d, hidden_states_p = torch.split(
hidden_states[:num_actual_tokens],
[num_decodes, num_prefill_tokens],
dim=0,
)
gate_d, gate_p = torch.split(
gate[:num_actual_tokens], [num_decodes, num_prefill_tokens], dim=0
)
# Split along batch dimension
state_indices_tensor_d, state_indices_tensor_p = torch.split(
state_indices_tensor,
[num_decodes, num_prefills],
dim=0,
)
# Preallocate output tensor to avoid memcpy cost for merging prefill
# and decode outputs
preallocated_ssm_out = torch.empty(
[
num_prefill_tokens + num_decodes,
(self.num_heads // self.tp_size) * self.head_dim,
],
dtype=hidden_states.dtype,
device=hidden_states.device,
)
preallocated_ssm_out_d, preallocated_ssm_out_p = torch.split(
preallocated_ssm_out,
[num_decodes, num_prefill_tokens],
dim=0,
)
# Process prefill requests
if has_prefill:
# 2. Convolution sequence transformation
# - "cache_indices" updates the conv_state cache in positions
# pointed to by "state_indices_tensor"
x = hidden_states_p.transpose(0, 1) # this is the form that causal-conv see
hidden_states_p = causal_conv1d_fn(
x,
conv_weights,
self.conv1d.bias,
activation=self.activation,
conv_states=conv_state,
has_initial_state=has_initial_states_p,
cache_indices=state_indices_tensor_p,
metadata=attn_metadata,
query_start_loc=query_start_loc_p,
)
hidden_states_p = hidden_states_p.transpose(0, 1)
hidden_states_p = hidden_states_p[:num_prefill_tokens]
# In some instances, the following `bcdt_proj` op
# requires contiguous inputs
# (e.g. if the Marlin kernel is used).
hidden_states_p = hidden_states_p.contiguous()
B, C, dt = self._project_ssm_parameters(hidden_states_p)
# 3. State Space Model sequence transformation
initial_states = None
if has_initial_states_p is not None and prep_initial_states:
# making a copy of the states
initial_states = torch.where(
has_initial_states_p[:, None, None, None],
ssm_state[state_indices_tensor_p],
0,
)
varlen_state = mamba_chunk_scan_combined_varlen(
hidden_states_p.view(
num_prefill_tokens, self.num_heads // self.tp_size, self.head_dim
),
dt,
self.A,
B.view(num_prefill_tokens, 1, -1),
C.view(num_prefill_tokens, 1, -1),
chunk_size=chunk_size,
D=self.D,
z=gate_p.view(
num_prefill_tokens, self.num_heads // self.tp_size, self.head_dim
),
dt_bias=self.dt_bias,
seq_idx=seq_idx_p,
cu_seqlens=query_start_loc_p,
cu_chunk_seqlens=cu_chunk_seqlen_p,
last_chunk_indices=last_chunk_indices_p,
initial_states=initial_states,
dt_softplus=True,
dt_limit=(0.0, float("inf")),
out=preallocated_ssm_out_p.view(num_prefill_tokens, -1, self.head_dim),
state_dtype=ssm_state.dtype,
)
# update ssm states
# - varlen state is a (batch, nheads, headdim, dstate) tensor
ssm_state[state_indices_tensor_p] = varlen_state
# Process decode requests
if has_decode:
# 2. Convolution sequence transformation
hidden_states_d = causal_conv1d_update(
hidden_states_d,
conv_state,
conv_weights,
self.conv1d.bias,
self.activation,
conv_state_indices=state_indices_tensor_d,
)
B, C, dt = self._project_ssm_parameters(hidden_states_d)
# 3. State Space Model sequence transformation
A = self.A[:, None, ...][:, :, None].expand(
-1, self.head_dim, self.config.mamba_d_state
)
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
D = self.D[:, None, ...].expand(-1, self.head_dim)
B = B.unsqueeze(1)
C = C.unsqueeze(1)
hidden_states_d = hidden_states_d.view(
-1, self.num_heads // self.tp_size, self.head_dim
)
# - the hidden is reshaped into (bs, num_heads, head_dim)
# - ssm_state's slots will be selected
# using state_indices_tensor_d
# NOTE: final output is an in-place update of out tensor
selective_state_update(
ssm_state,
hidden_states_d,
dt,
A,
B,
C,
D,
z=gate_d.reshape(num_decodes, -1, self.head_dim),
dt_bias=dt_bias,
dt_softplus=True,
state_batch_indices=state_indices_tensor_d,
out=preallocated_ssm_out_d.view(num_decodes, -1, self.head_dim),
)
# 4. Final linear projection
output[:num_actual_tokens] = self.out_proj(preallocated_ssm_out)
def get_state_dtype(self) -> tuple[torch.dtype, torch.dtype]:
assert self.model_config is not None
assert self.cache_config is not None
return MambaStateDtypeCalculator.mamba2_state_dtype(
self.model_config.dtype,
self.cache_config.mamba_cache_dtype,
self.cache_config.mamba_ssm_cache_dtype,
)
def get_state_shape(self) -> tuple[tuple[int, ...], tuple[int, ...]]:
return MambaStateShapeCalculator.mamba2_state_shape(
intermediate_size=self.intermediate_size,
tp_world_size=get_tensor_model_parallel_world_size(),
n_groups=0,
num_heads=self.num_heads,
head_dim=self.head_dim,
state_size=self.ssm_state_size,
conv_kernel=self.conv_kernel_size,
)
@property
def mamba_type(self) -> str:
return "mamba2"
def get_attn_backend(self) -> type["AttentionBackend"]:
from vllm.v1.attention.backends.mamba2_attn import Mamba2AttentionBackend
return Mamba2AttentionBackend
def plamo2_mamba_mixer(
hidden_states: torch.Tensor,
output: torch.Tensor,
layer_name: str,
) -> None:
forward_context: ForwardContext = get_forward_context()
self = forward_context.no_compile_layers[layer_name]
self.forward_cuda(hidden_states=hidden_states, output=output)
def plamo2_mamba_mixer_fake(
hidden_states: torch.Tensor,
output: torch.Tensor,
layer_name: str,
) -> None:
return
direct_register_custom_op(
op_name="plamo2_mamba_mixer",
op_func=plamo2_mamba_mixer,
mutates_args=["output"],
fake_impl=plamo2_mamba_mixer_fake,
)
class DenseMLP(nn.Module):
def __init__(
self,
config: Plamo2Config,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_up_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
prefix=f"{prefix}.gate_up_proj",
quant_config=quant_config,
return_bias=False,
)
self.act = SiluAndMul()
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
prefix=f"{prefix}.down_proj",
quant_config=quant_config,
return_bias=False,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
h = self.gate_up_proj(hidden_states)
h = self.act(h)
return self.down_proj(h)
class Plamo2AttentionMixer(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "", **kwargs) -> None:
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = config.hidden_size_per_head
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
config.hidden_size,
bias=False,
quant_config=quant_config,
)
self.rope_theta = config.rope_theta if hasattr(config, "rope_theta") else 10000
self.rope_scaling = (
config.rope_scaling if hasattr(config, "rope_scaling") else None
)
max_position = config.max_position_embeddings
if hasattr(vllm_config.model_config, "max_model_len") and isinstance(
vllm_config.model_config.max_model_len, int
):
max_position = min(max_position, vllm_config.model_config.max_model_len)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=self.rope_theta,
rope_scaling=self.rope_scaling,
)
self.q_norm = RMSNorm(config.hidden_size_per_head, eps=config.rms_norm_eps)
self.q_norm.weight = torch.nn.Parameter(
torch.ones((self.num_heads, config.hidden_size_per_head))
)
set_weight_attrs(
self.q_norm.weight, {"weight_loader": sharded_weight_loader(0)}
)
self.k_norm = RMSNorm(config.hidden_size_per_head, eps=config.rms_norm_eps)
self.k_norm.weight = torch.nn.Parameter(
torch.ones((self.num_kv_heads, config.hidden_size_per_head))
)
# Tensor-parallelism shards the K norm weights to the tp ranks
# in a head-wise manner. This approach does not work if there is only
# a single KV head, as is the case for PLaMo 2-1B.
if self.total_num_kv_heads != 1:
set_weight_attrs(
self.k_norm.weight, {"weight_loader": sharded_weight_loader(0)}
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
**kwargs,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q_shape = q.shape
q = q.reshape(q_shape[:-1] + self.q_norm.weight.shape)
q = self.q_norm.forward_native(q).reshape(q_shape)
k_shape = k.shape
k = k.reshape(k_shape[:-1] + self.k_norm.weight.shape)
k = self.k_norm.forward_native(k).reshape(k_shape)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class Plamo2DecoderLayer(nn.Module):
def __init__(
self, vllm_config: VllmConfig, layer_idx: int, prefix: str = "", **kwargs
) -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.is_mamba = is_mamba(config, layer_idx)
if self.is_mamba:
self.mixer = Plamo2MambaMixer(
vllm_config=vllm_config, prefix=f"{prefix}.mixer"
)
else:
self.mixer = Plamo2AttentionMixer(
vllm_config=vllm_config, prefix=f"{prefix}.mixer"
)
self.mlp = DenseMLP(
config=config, quant_config=quant_config, prefix=f"{prefix}.mlp"
)
self.pre_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.pre_mixer_norm(hidden_states)
else:
hidden_states, residual = self.pre_mixer_norm(hidden_states, residual)
if self.is_mamba:
# Plamo2MambaMixer writes output to this tensor
output = torch.empty_like(hidden_states)
mixer_kwargs = {
"output": output,
}
else:
mixer_kwargs = {
"positions": positions,
}
hidden_states = self.mixer(
hidden_states=hidden_states,
**mixer_kwargs,
)
if self.is_mamba:
hidden_states = output
hidden_states = self.post_mixer_norm(hidden_states)
# Fully Connected
hidden_states, residual = self.pre_mlp_norm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_mlp_norm(hidden_states)
return hidden_states, residual
class Plamo2Decoder(torch.nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
extra_kwargs = {"is_lora_enabled": bool(vllm_config.lora_config)}
def get_layer(prefix: str):
layer_idx = int(prefix.rsplit(".", 1)[1])
return Plamo2DecoderLayer(
vllm_config=vllm_config,
layer_idx=layer_idx,
prefix=prefix,
**extra_kwargs,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> torch.Tensor:
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
residual=residual,
)
return hidden_states, residual
@support_torch_compile
class Plamo2Model(torch.nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.org_vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
prefix=f"{prefix}.embed_tokens",
)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
self.layers = Plamo2Decoder(vllm_config=vllm_config, prefix=f"{prefix}.layers")
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
hidden_states, residual = self.layers(
positions=positions,
hidden_states=hidden_states,
residual=residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class Plamo2ForCausalLM(torch.nn.Module, HasInnerState, SupportsPP, IsHybrid):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
scheduler_config = vllm_config.scheduler_config
self.config = config
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.scheduler_config = scheduler_config
# ModelConfig.get_head_size assumes head_dim is set or calculated as
# hidden_size // num_attention_heads. However, this is not always
# the case for PLaMo2, as indicated by the FIXME comment.
self.config.head_dim = self.config.hidden_size_per_head
self.model = Plamo2Model(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
self.vocab_size = self.config.vocab_size
self.unpadded_vocab_size = self.config.vocab_size
num_embeddings = ((self.vocab_size + 15) // 16) * 16
self.lm_head = ParallelLMHead(
num_embeddings,
self.config.hidden_size,
org_num_embeddings=self.config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
prefix=f"{prefix}.lm_head",
)
if self.config.tie_word_embeddings:
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
self.logits_processor = LogitsProcessor(
self.unpadded_vocab_size, self.config.vocab_size
)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
):
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.mamba2_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
vllm_config.cache_config.mamba_ssm_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[tuple[int, int], tuple[int, int, int]]:
"""Calculate shapes for Mamba's convolutional and state caches.
Args:
vllm_config: vLLM config
Returns:
Tuple containing:
- conv_state_shape: Shape for convolutional state cache
- temporal_state_shape: Shape for state space model cache
"""
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
intermediate_size = hf_config.mamba_num_heads * hf_config.hidden_size_per_head
return MambaStateShapeCalculator.mamba2_state_shape(
intermediate_size=intermediate_size,
tp_world_size=parallel_config.tensor_parallel_size,
n_groups=0,
num_heads=hf_config.mamba_num_heads,
head_dim=hf_config.hidden_size_per_head,
state_size=hf_config.mamba_d_state,
conv_kernel=hf_config.mamba_d_conv,
)
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
# Both tie_word_embeddings=True and lm_head.weight in the safetensor
# at the same time causes dict key access error.
if name == "lm_head.weight" and self.config.tie_word_embeddings:
assert "lm_head.weight" not in params_dict
continue
# Update the weight names to be compatible with the vllm version
# of the model.
# Do not change the order of the replacements.
replacements = {
# Rename incompatible weight names.
".A_log": ".A",
".B_norm_weight": ".B_norm.weight",
".C_norm_weight": ".C_norm.weight",
".dt_norm_weight": ".dt_norm.weight",
".q_weight": ".q_norm.weight",
".k_weight": ".k_norm.weight",
}
# Apply replacements based on the defined mappings
for old, new in replacements.items():
if old in name:
name = name.replace(old, new)
# Reshape the in_proj weights to match the shape expected
# by MergedColumnParallelLinear.
# This works both for unquantized weights and
# for quantized weights.
# In the quantized case, the weights are already transposed.
# Also, in addition to the quantized weights,
# the zero points and scales have to be reshaped as well.
# Packing should not be affected by this.
if (
".mixer.in_proj.weight" in name
or "mixer.in_proj.qweight" in name
or "mixer.in_proj.scales" in name
or "mixer.in_proj.qzeros" in name
):
if "mixer.in_proj.weight" in name:
loaded_weight = loaded_weight.transpose(0, 1)
# for weight:
# loaded_weight.shape[0] == self.config.hidden_size
# for qweight:
# loaded_weight.shape[0] == self.config.hidden_size // param.pack_factor # noqa
# for scales and qzeros:
# loaded_weight.shape[0] == self.config.hidden_size // self.vllm_config.quant_config.group_size # noqa
loaded_weight = loaded_weight.reshape(
loaded_weight.shape[0], self.config.mamba_num_heads, -1
)
gate_weight, hidden_states_weight = loaded_weight.chunk(2, dim=-1)
gate_weight = gate_weight.reshape(loaded_weight.shape[0], -1)
hidden_states_weight = hidden_states_weight.reshape(
loaded_weight.shape[0], -1
)
loaded_weight = torch.cat([gate_weight, hidden_states_weight], dim=-1)
if "mixer.in_proj.weight" in name:
loaded_weight = loaded_weight.transpose(0, 1)
# Offset parameter with vllm's RMSNorm haven't been supported yet.
if ".pre_mixer_norm" in name:
loaded_weight += 1.0
elif ".post_mixer_norm" in name:
loaded_weight += 1.0 / 5
elif ".pre_mlp_norm" in name:
loaded_weight += 1.0
elif ".post_mlp_norm" in name:
loaded_weight += 1.0 / (5**1.5)
elif "model.norm.weight" in name:
loaded_weight += 1.0
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)