mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Signed-off-by: morrison-turnansky <mturnans@redhat.com> Signed-off-by: Morrison Turnansky <mturnans@redhat.com> Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
318 lines
10 KiB
Python
318 lines
10 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""
|
|
Test (piecewise) compilation with a simple model where multiple submodules
|
|
are compiled and graph captured separately.
|
|
"""
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.compilation.backends import set_model_tag
|
|
from vllm.compilation.counter import compilation_counter
|
|
from vllm.compilation.decorators import ignore_torch_compile, support_torch_compile
|
|
from vllm.config import (
|
|
CompilationConfig,
|
|
CompilationMode,
|
|
CUDAGraphMode,
|
|
VllmConfig,
|
|
set_current_vllm_config,
|
|
)
|
|
from vllm.forward_context import BatchDescriptor, set_forward_context
|
|
|
|
# This import automatically registers `torch.ops.silly.attention`
|
|
from .. import silly_attention # noqa: F401
|
|
|
|
BATCH_SIZE = 32
|
|
MLP_SIZE = 128
|
|
HIDDEN_SIZE = 1024
|
|
RANDOM_SEED = 0
|
|
|
|
|
|
@support_torch_compile
|
|
class ParentModel(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "", **kwargs) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, mlp_size: int, hidden_size: int) -> None:
|
|
super().__init__()
|
|
self.pre_attn = nn.Linear(mlp_size, hidden_size, bias=False)
|
|
self.post_attn = nn.Linear(hidden_size, mlp_size, bias=False)
|
|
self.rms_norm_weight = nn.Parameter(torch.ones(hidden_size))
|
|
|
|
# Initialize to same weights for testing
|
|
nn.init.xavier_normal_(
|
|
self.pre_attn.weight.data,
|
|
generator=torch.Generator().manual_seed(RANDOM_SEED),
|
|
gain=0.001,
|
|
)
|
|
nn.init.xavier_normal_(
|
|
self.post_attn.weight.data,
|
|
generator=torch.Generator().manual_seed(RANDOM_SEED),
|
|
gain=0.001,
|
|
)
|
|
|
|
def rms_norm_ref(self, x: torch.Tensor) -> torch.Tensor:
|
|
x_f32 = x.float()
|
|
return (
|
|
x_f32
|
|
* torch.rsqrt(torch.mean(x_f32.square(), dim=-1, keepdim=True) + 1e-6)
|
|
* self.rms_norm_weight
|
|
).to(x.dtype)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.pre_attn(x)
|
|
x = self.rms_norm_ref(x)
|
|
attn_output = torch.empty_like(x)
|
|
torch.ops.silly.attention(x, x, x, attn_output)
|
|
x = attn_output
|
|
x = self.rms_norm_ref(x)
|
|
x = self.post_attn(x)
|
|
return x
|
|
|
|
|
|
@support_torch_compile
|
|
class CompiledAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
mlp_size: int,
|
|
hidden_size: int,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__()
|
|
self.attn = Attention(mlp_size, hidden_size)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.attn(x)
|
|
|
|
|
|
@support_torch_compile
|
|
class CompiledAttentionTwo(CompiledAttention):
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.attn(x) + x
|
|
|
|
|
|
@ignore_torch_compile
|
|
class SimpleModelWithTwoGraphs(ParentModel):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
mlp_size: int,
|
|
hidden_size: int,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
# Test will fail without set_model_tag here with error:
|
|
# "ValueError: too many values to unpack (expected 3)"
|
|
# This is because CompiledAttention and CompiledAttentionTwo
|
|
# have different implementations but the same torch.compile
|
|
# cache dir will be used as default prefix is 'model_tag'
|
|
with set_model_tag("attn_one"):
|
|
self.attn_one = CompiledAttention(
|
|
mlp_size=mlp_size,
|
|
hidden_size=hidden_size,
|
|
vllm_config=vllm_config,
|
|
prefix=f"{prefix}.attn_one",
|
|
)
|
|
with set_model_tag("attn_two"):
|
|
self.attn_two = CompiledAttentionTwo(
|
|
mlp_size=mlp_size,
|
|
hidden_size=hidden_size,
|
|
vllm_config=vllm_config,
|
|
prefix=f"{prefix}.attn_two",
|
|
)
|
|
|
|
self.hidden_states = torch.zeros((BATCH_SIZE, MLP_SIZE)).cuda()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
bsz = x.shape[0]
|
|
# CUDAGraph expects same tensor addresses for each run
|
|
self.hidden_states[:bsz].copy_(x)
|
|
x = self.attn_one(self.hidden_states[:bsz])
|
|
self.hidden_states[:bsz].copy_(x)
|
|
x = self.attn_two(self.hidden_states[:bsz])
|
|
return x
|
|
|
|
|
|
@torch.inference_mode
|
|
def run_model(
|
|
vllm_config: VllmConfig,
|
|
model: nn.Module,
|
|
inputs: torch.Tensor,
|
|
cudagraph_runtime_mode: CUDAGraphMode,
|
|
):
|
|
with set_forward_context({}, vllm_config=vllm_config):
|
|
# warmup for the model with cudagraph_mode NONE
|
|
model(inputs)
|
|
|
|
# simulate cudagraphs capturing
|
|
with set_forward_context(
|
|
{},
|
|
vllm_config=vllm_config,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode,
|
|
batch_descriptor=BatchDescriptor(
|
|
num_tokens=2,
|
|
),
|
|
):
|
|
model(inputs[:2])
|
|
with set_forward_context(
|
|
{},
|
|
vllm_config=vllm_config,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode,
|
|
batch_descriptor=BatchDescriptor(
|
|
num_tokens=1,
|
|
),
|
|
):
|
|
model(inputs[:1])
|
|
|
|
# simulate cudagraphs replay
|
|
with set_forward_context(
|
|
{},
|
|
vllm_config=vllm_config,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode,
|
|
batch_descriptor=BatchDescriptor(
|
|
num_tokens=2,
|
|
),
|
|
):
|
|
output = model(inputs[:2])
|
|
|
|
output = output.cpu()
|
|
return output.cpu()
|
|
|
|
|
|
@pytest.mark.parametrize("use_inductor_graph_partition", [False, True])
|
|
def test_multi_graph_piecewise_compile(use_inductor_graph_partition: bool):
|
|
if use_inductor_graph_partition:
|
|
# FIXME(luka/boyuan): this currently fails
|
|
pytest.skip("Inductor graph partition not supported with multi-graph")
|
|
|
|
outputs = []
|
|
|
|
# vllmcompile compile
|
|
vllm_config = VllmConfig(
|
|
compilation_config=CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
use_cudagraph=True,
|
|
splitting_ops=["silly::attention"],
|
|
cudagraph_capture_sizes=[1, 2],
|
|
use_inductor_graph_partition=use_inductor_graph_partition,
|
|
)
|
|
)
|
|
cudagraph_runtime_mode = CUDAGraphMode.PIECEWISE
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
model = (
|
|
SimpleModelWithTwoGraphs(
|
|
mlp_size=MLP_SIZE,
|
|
hidden_size=HIDDEN_SIZE,
|
|
vllm_config=vllm_config,
|
|
prefix="",
|
|
)
|
|
.eval()
|
|
.cuda()
|
|
)
|
|
|
|
# Pre-allocate memory for CUDAGraph which expects
|
|
# static tensor addresses
|
|
inputs = torch.randn(BATCH_SIZE, MLP_SIZE).cuda()
|
|
|
|
if use_inductor_graph_partition:
|
|
# Splitting happens at Inductor lowering level,
|
|
# total piecewise fx graphs is equal to total graphs
|
|
num_piecewise_fx = 2
|
|
num_piecewise_capturable_fx = 2
|
|
else:
|
|
# attn_one, attn_two each has 3 piecewise graphs
|
|
# (pre attn, post attn, silly_attention) each
|
|
num_piecewise_fx = 6
|
|
# attn_one, attn_two has pre attn and post attn each, total=4
|
|
num_piecewise_capturable_fx = 4
|
|
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=2, # two graphs for the model
|
|
num_piecewise_graphs_seen=num_piecewise_fx,
|
|
num_piecewise_capturable_graphs_seen=num_piecewise_capturable_fx,
|
|
num_backend_compilations=num_piecewise_capturable_fx,
|
|
num_cudagraph_captured=8, # num_cudagraph_sizes * num_partitions
|
|
):
|
|
outputs.append(run_model(vllm_config, model, inputs, cudagraph_runtime_mode))
|
|
|
|
# no compile or cudagraph
|
|
vllm_config = VllmConfig(
|
|
compilation_config=CompilationConfig(
|
|
mode=CompilationMode.NONE,
|
|
)
|
|
)
|
|
cudagraph_runtime_mode = CUDAGraphMode.NONE
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
model = (
|
|
SimpleModelWithTwoGraphs(
|
|
mlp_size=MLP_SIZE,
|
|
hidden_size=HIDDEN_SIZE,
|
|
vllm_config=vllm_config,
|
|
prefix="",
|
|
)
|
|
.eval()
|
|
.cuda()
|
|
)
|
|
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=0,
|
|
num_piecewise_graphs_seen=0,
|
|
num_piecewise_capturable_graphs_seen=0,
|
|
num_backend_compilations=0,
|
|
num_cudagraph_captured=0,
|
|
):
|
|
outputs.append(run_model(vllm_config, model, inputs, cudagraph_runtime_mode))
|
|
|
|
# piecewise compile without CUDA graph
|
|
vllm_config = VllmConfig(
|
|
compilation_config=CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
use_cudagraph=False,
|
|
splitting_ops=["silly::attention"],
|
|
use_inductor_graph_partition=use_inductor_graph_partition,
|
|
)
|
|
)
|
|
cudagraph_runtime_mode = CUDAGraphMode.PIECEWISE
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
model = (
|
|
SimpleModelWithTwoGraphs(
|
|
mlp_size=MLP_SIZE,
|
|
hidden_size=HIDDEN_SIZE,
|
|
vllm_config=vllm_config,
|
|
prefix="",
|
|
)
|
|
.eval()
|
|
.cuda()
|
|
)
|
|
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=2,
|
|
num_piecewise_graphs_seen=num_piecewise_fx,
|
|
num_piecewise_capturable_graphs_seen=num_piecewise_capturable_fx,
|
|
num_backend_compilations=num_piecewise_capturable_fx,
|
|
num_cudagraph_captured=0, # no cudagraph captured
|
|
):
|
|
outputs.append(run_model(vllm_config, model, inputs, cudagraph_runtime_mode))
|
|
|
|
# Generally don't expect outputs with and without inductor
|
|
# to be bitwise equivalent
|
|
assert torch.allclose(outputs[0], outputs[1])
|
|
|
|
# Expect bitwise equivalence using inductor w/ and w/o cudagraph
|
|
assert torch.equal(outputs[0], outputs[2])
|