Files
vllm/tests/compile/piecewise/test_multiple_graphs.py
2025-10-15 02:51:16 +00:00

318 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Test (piecewise) compilation with a simple model where multiple submodules
are compiled and graph captured separately.
"""
import pytest
import torch
from torch import nn
from vllm.compilation.backends import set_model_tag
from vllm.compilation.counter import compilation_counter
from vllm.compilation.decorators import ignore_torch_compile, support_torch_compile
from vllm.config import (
CompilationConfig,
CompilationMode,
CUDAGraphMode,
VllmConfig,
set_current_vllm_config,
)
from vllm.forward_context import BatchDescriptor, set_forward_context
# This import automatically registers `torch.ops.silly.attention`
from .. import silly_attention # noqa: F401
BATCH_SIZE = 32
MLP_SIZE = 128
HIDDEN_SIZE = 1024
RANDOM_SEED = 0
@support_torch_compile
class ParentModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "", **kwargs) -> None:
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x
class Attention(nn.Module):
def __init__(self, mlp_size: int, hidden_size: int) -> None:
super().__init__()
self.pre_attn = nn.Linear(mlp_size, hidden_size, bias=False)
self.post_attn = nn.Linear(hidden_size, mlp_size, bias=False)
self.rms_norm_weight = nn.Parameter(torch.ones(hidden_size))
# Initialize to same weights for testing
nn.init.xavier_normal_(
self.pre_attn.weight.data,
generator=torch.Generator().manual_seed(RANDOM_SEED),
gain=0.001,
)
nn.init.xavier_normal_(
self.post_attn.weight.data,
generator=torch.Generator().manual_seed(RANDOM_SEED),
gain=0.001,
)
def rms_norm_ref(self, x: torch.Tensor) -> torch.Tensor:
x_f32 = x.float()
return (
x_f32
* torch.rsqrt(torch.mean(x_f32.square(), dim=-1, keepdim=True) + 1e-6)
* self.rms_norm_weight
).to(x.dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.pre_attn(x)
x = self.rms_norm_ref(x)
attn_output = torch.empty_like(x)
torch.ops.silly.attention(x, x, x, attn_output)
x = attn_output
x = self.rms_norm_ref(x)
x = self.post_attn(x)
return x
@support_torch_compile
class CompiledAttention(nn.Module):
def __init__(
self,
*,
mlp_size: int,
hidden_size: int,
vllm_config: VllmConfig,
prefix: str = "",
**kwargs,
) -> None:
super().__init__()
self.attn = Attention(mlp_size, hidden_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.attn(x)
@support_torch_compile
class CompiledAttentionTwo(CompiledAttention):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.attn(x) + x
@ignore_torch_compile
class SimpleModelWithTwoGraphs(ParentModel):
def __init__(
self,
*,
mlp_size: int,
hidden_size: int,
vllm_config: VllmConfig,
prefix: str = "",
**kwargs,
) -> None:
super().__init__(vllm_config=vllm_config, prefix=prefix)
# Test will fail without set_model_tag here with error:
# "ValueError: too many values to unpack (expected 3)"
# This is because CompiledAttention and CompiledAttentionTwo
# have different implementations but the same torch.compile
# cache dir will be used as default prefix is 'model_tag'
with set_model_tag("attn_one"):
self.attn_one = CompiledAttention(
mlp_size=mlp_size,
hidden_size=hidden_size,
vllm_config=vllm_config,
prefix=f"{prefix}.attn_one",
)
with set_model_tag("attn_two"):
self.attn_two = CompiledAttentionTwo(
mlp_size=mlp_size,
hidden_size=hidden_size,
vllm_config=vllm_config,
prefix=f"{prefix}.attn_two",
)
self.hidden_states = torch.zeros((BATCH_SIZE, MLP_SIZE)).cuda()
def forward(self, x: torch.Tensor) -> torch.Tensor:
bsz = x.shape[0]
# CUDAGraph expects same tensor addresses for each run
self.hidden_states[:bsz].copy_(x)
x = self.attn_one(self.hidden_states[:bsz])
self.hidden_states[:bsz].copy_(x)
x = self.attn_two(self.hidden_states[:bsz])
return x
@torch.inference_mode
def run_model(
vllm_config: VllmConfig,
model: nn.Module,
inputs: torch.Tensor,
cudagraph_runtime_mode: CUDAGraphMode,
):
with set_forward_context({}, vllm_config=vllm_config):
# warmup for the model with cudagraph_mode NONE
model(inputs)
# simulate cudagraphs capturing
with set_forward_context(
{},
vllm_config=vllm_config,
cudagraph_runtime_mode=cudagraph_runtime_mode,
batch_descriptor=BatchDescriptor(
num_tokens=2,
),
):
model(inputs[:2])
with set_forward_context(
{},
vllm_config=vllm_config,
cudagraph_runtime_mode=cudagraph_runtime_mode,
batch_descriptor=BatchDescriptor(
num_tokens=1,
),
):
model(inputs[:1])
# simulate cudagraphs replay
with set_forward_context(
{},
vllm_config=vllm_config,
cudagraph_runtime_mode=cudagraph_runtime_mode,
batch_descriptor=BatchDescriptor(
num_tokens=2,
),
):
output = model(inputs[:2])
output = output.cpu()
return output.cpu()
@pytest.mark.parametrize("use_inductor_graph_partition", [False, True])
def test_multi_graph_piecewise_compile(use_inductor_graph_partition: bool):
if use_inductor_graph_partition:
# FIXME(luka/boyuan): this currently fails
pytest.skip("Inductor graph partition not supported with multi-graph")
outputs = []
# vllmcompile compile
vllm_config = VllmConfig(
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
use_cudagraph=True,
splitting_ops=["silly::attention"],
cudagraph_capture_sizes=[1, 2],
use_inductor_graph_partition=use_inductor_graph_partition,
)
)
cudagraph_runtime_mode = CUDAGraphMode.PIECEWISE
with set_current_vllm_config(vllm_config):
model = (
SimpleModelWithTwoGraphs(
mlp_size=MLP_SIZE,
hidden_size=HIDDEN_SIZE,
vllm_config=vllm_config,
prefix="",
)
.eval()
.cuda()
)
# Pre-allocate memory for CUDAGraph which expects
# static tensor addresses
inputs = torch.randn(BATCH_SIZE, MLP_SIZE).cuda()
if use_inductor_graph_partition:
# Splitting happens at Inductor lowering level,
# total piecewise fx graphs is equal to total graphs
num_piecewise_fx = 2
num_piecewise_capturable_fx = 2
else:
# attn_one, attn_two each has 3 piecewise graphs
# (pre attn, post attn, silly_attention) each
num_piecewise_fx = 6
# attn_one, attn_two has pre attn and post attn each, total=4
num_piecewise_capturable_fx = 4
with compilation_counter.expect(
num_graphs_seen=2, # two graphs for the model
num_piecewise_graphs_seen=num_piecewise_fx,
num_piecewise_capturable_graphs_seen=num_piecewise_capturable_fx,
num_backend_compilations=num_piecewise_capturable_fx,
num_cudagraph_captured=8, # num_cudagraph_sizes * num_partitions
):
outputs.append(run_model(vllm_config, model, inputs, cudagraph_runtime_mode))
# no compile or cudagraph
vllm_config = VllmConfig(
compilation_config=CompilationConfig(
mode=CompilationMode.NONE,
)
)
cudagraph_runtime_mode = CUDAGraphMode.NONE
with set_current_vllm_config(vllm_config):
model = (
SimpleModelWithTwoGraphs(
mlp_size=MLP_SIZE,
hidden_size=HIDDEN_SIZE,
vllm_config=vllm_config,
prefix="",
)
.eval()
.cuda()
)
with compilation_counter.expect(
num_graphs_seen=0,
num_piecewise_graphs_seen=0,
num_piecewise_capturable_graphs_seen=0,
num_backend_compilations=0,
num_cudagraph_captured=0,
):
outputs.append(run_model(vllm_config, model, inputs, cudagraph_runtime_mode))
# piecewise compile without CUDA graph
vllm_config = VllmConfig(
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
use_cudagraph=False,
splitting_ops=["silly::attention"],
use_inductor_graph_partition=use_inductor_graph_partition,
)
)
cudagraph_runtime_mode = CUDAGraphMode.PIECEWISE
with set_current_vllm_config(vllm_config):
model = (
SimpleModelWithTwoGraphs(
mlp_size=MLP_SIZE,
hidden_size=HIDDEN_SIZE,
vllm_config=vllm_config,
prefix="",
)
.eval()
.cuda()
)
with compilation_counter.expect(
num_graphs_seen=2,
num_piecewise_graphs_seen=num_piecewise_fx,
num_piecewise_capturable_graphs_seen=num_piecewise_capturable_fx,
num_backend_compilations=num_piecewise_capturable_fx,
num_cudagraph_captured=0, # no cudagraph captured
):
outputs.append(run_model(vllm_config, model, inputs, cudagraph_runtime_mode))
# Generally don't expect outputs with and without inductor
# to be bitwise equivalent
assert torch.allclose(outputs[0], outputs[1])
# Expect bitwise equivalence using inductor w/ and w/o cudagraph
assert torch.equal(outputs[0], outputs[2])