mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
147 lines
5.7 KiB
Python
147 lines
5.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from collections.abc import Iterable
|
|
|
|
from vllm.entrypoints.openai.protocol import (
|
|
ChatCompletionRequest,
|
|
DeltaMessage,
|
|
ExtractedToolCallInformation,
|
|
FunctionCall,
|
|
ToolCall,
|
|
)
|
|
from vllm.entrypoints.openai.tool_parsers import ToolParser
|
|
|
|
|
|
class StreamingToolReconstructor:
|
|
def __init__(self, assert_one_tool_per_delta: bool = True):
|
|
self.tool_calls: list[ToolCall] = []
|
|
self.other_content: str = ""
|
|
self._assert_one_tool_per_delta = assert_one_tool_per_delta
|
|
|
|
def append_delta(self, delta: DeltaMessage):
|
|
if delta.content is not None:
|
|
self.other_content += delta.content
|
|
else:
|
|
assert delta.tool_calls, (
|
|
"Streaming results should have either content or tool calls (or both)"
|
|
)
|
|
if self._assert_one_tool_per_delta:
|
|
# Note: This isn't strictly required by the API and may not be
|
|
# possible to adhere to depending on the token space and number of
|
|
# tokens per streamed response from the model, but it is required
|
|
# by tool_use tests, so we enforce it here by default also.
|
|
assert len(delta.tool_calls) < 2, (
|
|
"Streaming should include only one tool call per update."
|
|
)
|
|
for call_delta in delta.tool_calls:
|
|
assert call_delta.type is None or call_delta.type == "function", (
|
|
"Streaming tool calls should only emit function calls. Got "
|
|
f"{call_delta.type}"
|
|
)
|
|
current_tool_call = (
|
|
self.tool_calls[call_delta.index]
|
|
if call_delta.index < len(self.tool_calls)
|
|
else None
|
|
)
|
|
if current_tool_call:
|
|
assert not call_delta.function.name, (
|
|
"Streaming tool calls should emit the full function name "
|
|
f"exactly once. Got {call_delta.function.name}"
|
|
)
|
|
assert not call_delta.id, (
|
|
"Streaming tool calls must emit function id only once. Got "
|
|
f"{call_delta.id}"
|
|
)
|
|
assert call_delta.index == len(self.tool_calls) - 1, (
|
|
f"Incorrect index for tool delta. Got {call_delta.index}, "
|
|
f"expected {len(self.tool_calls) - 1}"
|
|
)
|
|
current_tool_call.function.arguments += call_delta.function.arguments
|
|
else:
|
|
assert call_delta.id is not None, (
|
|
"Streaming tool calls must have an id on first appearance"
|
|
)
|
|
assert call_delta.function.name is not None, (
|
|
"Streaming tool calls must have a function name on first appearance"
|
|
)
|
|
assert call_delta.index == len(self.tool_calls), (
|
|
f"Incorrect index for tool delta. Got {call_delta.index}, "
|
|
f"expected {len(self.tool_calls)}"
|
|
)
|
|
self.tool_calls.append(
|
|
ToolCall(
|
|
id=call_delta.id,
|
|
function=FunctionCall(
|
|
name=call_delta.function.name,
|
|
arguments=call_delta.function.arguments or "",
|
|
),
|
|
)
|
|
)
|
|
|
|
|
|
def run_tool_extraction(
|
|
tool_parser: ToolParser,
|
|
model_output: str,
|
|
request: ChatCompletionRequest | None = None,
|
|
streaming: bool = False,
|
|
assert_one_tool_per_delta: bool = True,
|
|
) -> tuple[str | None, list[ToolCall]]:
|
|
if streaming:
|
|
reconstructor = run_tool_extraction_streaming(
|
|
tool_parser,
|
|
model_output,
|
|
request,
|
|
assert_one_tool_per_delta=assert_one_tool_per_delta,
|
|
)
|
|
return reconstructor.other_content or None, reconstructor.tool_calls
|
|
else:
|
|
extracted = run_tool_extraction_nonstreaming(tool_parser, model_output, request)
|
|
assert extracted.tools_called == bool(extracted.tool_calls)
|
|
return extracted.content, extracted.tool_calls
|
|
|
|
|
|
def run_tool_extraction_nonstreaming(
|
|
tool_parser: ToolParser,
|
|
model_output: str,
|
|
request: ChatCompletionRequest | None = None,
|
|
) -> ExtractedToolCallInformation:
|
|
request = request or ChatCompletionRequest(messages=[], model="test-model")
|
|
return tool_parser.extract_tool_calls(model_output, request)
|
|
|
|
|
|
def run_tool_extraction_streaming(
|
|
tool_parser: ToolParser,
|
|
model_deltas: Iterable[str],
|
|
request: ChatCompletionRequest | None = None,
|
|
assert_one_tool_per_delta: bool = True,
|
|
) -> StreamingToolReconstructor:
|
|
request = request or ChatCompletionRequest(messages=[], model="test-model")
|
|
reconstructor = StreamingToolReconstructor(
|
|
assert_one_tool_per_delta=assert_one_tool_per_delta
|
|
)
|
|
previous_text = ""
|
|
previous_tokens: list[int] = []
|
|
for delta in model_deltas:
|
|
token_delta = [
|
|
tool_parser.vocab.get(token)
|
|
for token in tool_parser.model_tokenizer.tokenize(delta)
|
|
if token in tool_parser.vocab
|
|
]
|
|
current_text = previous_text + delta
|
|
current_tokens = previous_tokens + token_delta
|
|
delta_message = tool_parser.extract_tool_calls_streaming(
|
|
previous_text,
|
|
current_text,
|
|
delta,
|
|
previous_tokens,
|
|
current_tokens,
|
|
token_delta,
|
|
request,
|
|
)
|
|
if delta_message is not None:
|
|
reconstructor.append_delta(delta_message)
|
|
previous_text = current_text
|
|
previous_tokens = current_tokens
|
|
return reconstructor
|