Files
vllm/tests/entrypoints/openai/test_completion_with_function_calling.py
2025-10-12 09:51:31 -07:00

333 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import datetime
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
# downloading lora to test lora requests
from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "Qwen/Qwen3-0.6B"
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to find the weather for, e.g. "
"'Vienna'",
"default": "Vienna",
},
"country": {
"type": "string",
"description": "The country that the city is in, e.g. "
"'Austria'",
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"],
},
"options": {
"$ref": "#/$defs/WeatherOptions",
"description": "Optional parameters for weather query",
},
},
"required": ["country", "unit"],
"$defs": {
"WeatherOptions": {
"title": "WeatherOptions",
"type": "object",
"additionalProperties": False,
"properties": {
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"default": "celsius",
"description": "Temperature unit",
"title": "Temperature Unit",
},
"include_forecast": {
"type": "boolean",
"default": False,
"description": "Whether to include a 24-hour forecast",
"title": "Include Forecast",
},
"language": {
"type": "string",
"default": "zh-CN",
"description": "Language of the response",
"title": "Language",
"enum": ["zh-CN", "en-US", "ja-JP"],
},
},
},
},
},
},
},
{
"type": "function",
"function": {
"name": "get_forecast",
"description": "Get the weather forecast for a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the forecast for, e.g. "
"'Vienna'",
"default": "Vienna",
},
"country": {
"type": "string",
"description": "The country that the city is in, e.g. "
"'Austria'",
},
"days": {
"type": "integer",
"description": "Number of days to get the forecast for (1-7)",
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["country", "days", "unit"],
},
},
},
]
messages = [
{"role": "user", "content": "Hi! How are you doing today?"},
{"role": "assistant", "content": "I'm doing well! How can I help you?"},
{
"role": "user",
"content": "Can you tell me what the current weather is in Berlin and the "
"forecast for the next 5 days, in fahrenheit?",
},
]
@pytest.fixture(scope="module")
def server(): # noqa: F811
args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"half",
"--enable-auto-tool-choice",
"--structured-outputs-config.backend",
"xgrammar",
"--tool-call-parser",
"hermes",
"--reasoning-parser",
"qwen3",
"--gpu-memory-utilization",
"0.4",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("stream", [True, False])
@pytest.mark.parametrize(
"tool_choice",
[
"auto",
"required",
{"type": "function", "function": {"name": "get_current_weather"}},
],
)
@pytest.mark.parametrize("enable_thinking", [True, False])
async def test_function_tool_use(
client: openai.AsyncOpenAI,
model_name: str,
stream: bool,
tool_choice: str | dict,
enable_thinking: bool,
):
if not stream:
# Non-streaming test
chat_completion = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice=tool_choice,
extra_body={"chat_template_kwargs": {"enable_thinking": enable_thinking}},
)
if enable_thinking:
assert chat_completion.choices[0].message.reasoning_content is not None
assert chat_completion.choices[0].message.reasoning_content != ""
assert chat_completion.choices[0].message.tool_calls is not None
assert len(chat_completion.choices[0].message.tool_calls) > 0
else:
# Streaming test
output_stream = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice=tool_choice,
stream=True,
extra_body={"chat_template_kwargs": {"enable_thinking": enable_thinking}},
)
output = []
async for chunk in output_stream:
if chunk.choices and chunk.choices[0].delta.tool_calls:
output.extend(chunk.choices[0].delta.tool_calls)
assert len(output) > 0
@pytest.fixture(scope="module")
def k2_server(): # noqa: F811
args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"half",
"--enable-auto-tool-choice",
"--structured-outputs-config.backend",
"xgrammar",
"--tool-call-parser",
"hermes",
"--reasoning-parser",
"qwen3",
"--gpu-memory-utilization",
"0.4",
]
# hack to test kimi_k2 tool use tool_id format.
# avoid error in is_deepseek_mla check by setting kv_lora_rank=null
with RemoteOpenAIServer(
MODEL_NAME,
args,
override_hf_configs={"model_type": "kimi_k2", "kv_lora_rank": None},
) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def k2_client(k2_server):
async with k2_server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("stream", [True, False])
@pytest.mark.parametrize("tool_choice", ["required"])
async def test_tool_id_kimi_k2(
k2_client: openai.AsyncOpenAI, model_name: str, stream: bool, tool_choice: str
):
if not stream:
# Non-streaming test
chat_completion = await k2_client.chat.completions.create(
messages=messages, model=model_name, tools=tools, tool_choice=tool_choice
)
assert chat_completion.choices[0].message.tool_calls is not None
assert len(chat_completion.choices[0].message.tool_calls) > 0
assert (
chat_completion.choices[0].message.tool_calls[0].id
== "functions.get_current_weather:0"
)
else:
# Streaming test
output_stream = await k2_client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice=tool_choice,
stream=True,
)
output = []
async for chunk in output_stream:
if chunk.choices and chunk.choices[0].delta.tool_calls:
output.extend(chunk.choices[0].delta.tool_calls)
for o in output:
assert o.id is None or o.id == "functions.get_current_weather:0"
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("arguments", ["{}", ""])
async def test_no_args_tool_call(
client: openai.AsyncOpenAI, model_name: str, arguments: str
):
# Step 1: Define a tool that requires no parameters
tools = [
{
"type": "function",
"function": {
"name": "get_current_time",
"description": "Get the current date and time. No parameters needed.",
"parameters": {
"type": "object",
"properties": {}, # No parameters
"required": [], # No required fields
},
},
}
]
messages = [{"role": "user", "content": "What time is it now?"}]
# Step 2: Send user message and let model decide whether to call the tool
response = await client.chat.completions.create(
model=model_name,
messages=messages,
tools=tools,
tool_choice="auto", # Let model choose automatically
)
# Step 3: Check if model wants to call a tool
message = response.choices[0].message
if message.tool_calls:
# Get the first tool call
tool_call = message.tool_calls[0]
tool_name = tool_call.function.name
# Step 4: Execute the tool locally (no parameters)
if tool_name == "get_current_time":
# Test both empty string and "{}" for no-arg tool calls
tool_call.function.arguments = arguments
messages.append(message)
current_time = datetime.datetime.now()
result = current_time.isoformat()
messages.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"content": result,
}
)
# Step 5: Send tool result back to model to continue conversation
final_response = await client.chat.completions.create(
model=model_name,
messages=messages,
)
# Output final natural language response
assert final_response.choices[0].message.content is not None
else:
# No tool called — just print model's direct reply
assert message.content is not None