mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
264 lines
9.5 KiB
Python
264 lines
9.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""
|
|
Test (piecewise) compilation with a simple model where multiple submodules
|
|
are compiled and graph captured separately.
|
|
"""
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.compilation.backends import set_model_tag
|
|
from vllm.compilation.counter import compilation_counter
|
|
from vllm.compilation.decorators import (ignore_torch_compile,
|
|
support_torch_compile)
|
|
from vllm.config import (CompilationConfig, CompilationLevel, CUDAGraphMode,
|
|
VllmConfig, set_current_vllm_config)
|
|
from vllm.forward_context import BatchDescriptor, set_forward_context
|
|
|
|
# This import automatically registers `torch.ops.silly.attention`
|
|
from .. import silly_attention # noqa: F401
|
|
|
|
BATCH_SIZE = 32
|
|
MLP_SIZE = 128
|
|
HIDDEN_SIZE = 1024
|
|
RANDOM_SEED = 0
|
|
|
|
|
|
@support_torch_compile
|
|
class ParentModel(nn.Module):
|
|
|
|
def __init__(self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = '',
|
|
**kwargs) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(self, mlp_size: int, hidden_size: int) -> None:
|
|
super().__init__()
|
|
self.pre_attn = nn.Linear(mlp_size, hidden_size, bias=False)
|
|
self.post_attn = nn.Linear(hidden_size, mlp_size, bias=False)
|
|
self.rms_norm_weight = nn.Parameter(torch.ones(hidden_size))
|
|
|
|
# Initialize to same weights for testing
|
|
nn.init.xavier_normal_(
|
|
self.pre_attn.weight.data,
|
|
generator=torch.Generator().manual_seed(RANDOM_SEED),
|
|
gain=0.001)
|
|
nn.init.xavier_normal_(
|
|
self.post_attn.weight.data,
|
|
generator=torch.Generator().manual_seed(RANDOM_SEED),
|
|
gain=0.001)
|
|
|
|
def rms_norm_ref(self, x: torch.Tensor) -> torch.Tensor:
|
|
x_f32 = x.float()
|
|
return (x_f32 * torch.rsqrt(
|
|
torch.mean(x_f32.square(), dim=-1, keepdim=True) + 1e-6) *
|
|
self.rms_norm_weight).to(x.dtype)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.pre_attn(x)
|
|
x = self.rms_norm_ref(x)
|
|
attn_output = torch.empty_like(x)
|
|
torch.ops.silly.attention(x, x, x, attn_output)
|
|
x = attn_output
|
|
x = self.rms_norm_ref(x)
|
|
x = self.post_attn(x)
|
|
return x
|
|
|
|
|
|
@support_torch_compile
|
|
class CompiledAttention(nn.Module):
|
|
|
|
def __init__(self,
|
|
*,
|
|
mlp_size: int,
|
|
hidden_size: int,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = '',
|
|
**kwargs) -> None:
|
|
super().__init__()
|
|
self.attn = Attention(mlp_size, hidden_size)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.attn(x)
|
|
|
|
|
|
@support_torch_compile
|
|
class CompiledAttentionTwo(CompiledAttention):
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.attn(x) + x
|
|
|
|
|
|
@ignore_torch_compile
|
|
class SimpleModelWithTwoGraphs(ParentModel):
|
|
|
|
def __init__(self,
|
|
*,
|
|
mlp_size: int,
|
|
hidden_size: int,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = '',
|
|
**kwargs) -> None:
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
# Test will fail without set_model_tag here with error:
|
|
# "ValueError: too many values to unpack (expected 3)"
|
|
# This is because CompiledAttention and CompiledAttentionTwo
|
|
# have different implementations but the same torch.compile
|
|
# cache dir will be used as default prefix is 'model_tag'
|
|
with set_model_tag("attn_one"):
|
|
self.attn_one = CompiledAttention(
|
|
mlp_size=mlp_size,
|
|
hidden_size=hidden_size,
|
|
vllm_config=vllm_config,
|
|
prefix=f"{prefix}.attn_one",
|
|
)
|
|
with set_model_tag("attn_two"):
|
|
self.attn_two = CompiledAttentionTwo(
|
|
mlp_size=mlp_size,
|
|
hidden_size=hidden_size,
|
|
vllm_config=vllm_config,
|
|
prefix=f"{prefix}.attn_two",
|
|
)
|
|
|
|
self.hidden_states = torch.zeros((BATCH_SIZE, MLP_SIZE)).cuda()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
bsz = x.shape[0]
|
|
# CUDAGraph expects same tensor addresses for each run
|
|
self.hidden_states[:bsz].copy_(x)
|
|
x = self.attn_one(self.hidden_states[:bsz])
|
|
self.hidden_states[:bsz].copy_(x)
|
|
x = self.attn_two(self.hidden_states[:bsz])
|
|
return x
|
|
|
|
|
|
@torch.inference_mode
|
|
def run_model(vllm_config: VllmConfig, model: nn.Module, inputs: torch.Tensor,
|
|
cudagraph_runtime_mode: CUDAGraphMode):
|
|
with set_forward_context({}, vllm_config=vllm_config):
|
|
# warmup for the model with cudagraph_mode NONE
|
|
model(inputs)
|
|
|
|
# simulate cudagraphs capturing
|
|
with set_forward_context({},
|
|
vllm_config=vllm_config,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode,
|
|
batch_descriptor=BatchDescriptor(
|
|
num_tokens=2, )):
|
|
model(inputs[:2])
|
|
with set_forward_context({},
|
|
vllm_config=vllm_config,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode,
|
|
batch_descriptor=BatchDescriptor(
|
|
num_tokens=1, )):
|
|
model(inputs[:1])
|
|
|
|
# simulate cudagraphs replay
|
|
with set_forward_context({},
|
|
vllm_config=vllm_config,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode,
|
|
batch_descriptor=BatchDescriptor(
|
|
num_tokens=2, )):
|
|
output = model(inputs[:2])
|
|
|
|
output = output.cpu()
|
|
return output.cpu()
|
|
|
|
|
|
def test_multi_graph_piecewise_compile_outputs_equal():
|
|
outputs = []
|
|
|
|
# piecewise compile
|
|
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
|
level=CompilationLevel.PIECEWISE,
|
|
use_cudagraph=True,
|
|
splitting_ops=["silly.attention"],
|
|
cudagraph_capture_sizes=[1, 2],
|
|
))
|
|
cudagraph_runtime_mode = CUDAGraphMode.PIECEWISE
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
model = SimpleModelWithTwoGraphs(mlp_size=MLP_SIZE,
|
|
hidden_size=HIDDEN_SIZE,
|
|
vllm_config=vllm_config,
|
|
prefix='').eval().cuda()
|
|
|
|
# Pre-allocate memory for CUDAGraph which expects
|
|
# static tensor addresses
|
|
inputs = torch.randn(BATCH_SIZE, MLP_SIZE).cuda()
|
|
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=2, # two graphs for the model
|
|
num_piecewise_graphs_seen=6,
|
|
# attn_one, attn_two each has 3 piecewise graphs
|
|
# (pre attn, post attn, silly_attention) each
|
|
num_piecewise_capturable_graphs_seen=4,
|
|
# attn_one, attn_two has pre attn and post attn each, total=4
|
|
num_backend_compilations=4, # num_piecewise_capturable_graphs_seen
|
|
num_cudagraph_captured=8,
|
|
# num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
|
|
):
|
|
outputs.append(
|
|
run_model(vllm_config, model, inputs, cudagraph_runtime_mode))
|
|
|
|
# no compile or cudagraph
|
|
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
|
level=CompilationLevel.NO_COMPILATION, ))
|
|
cudagraph_runtime_mode = CUDAGraphMode.NONE
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
model = SimpleModelWithTwoGraphs(mlp_size=MLP_SIZE,
|
|
hidden_size=HIDDEN_SIZE,
|
|
vllm_config=vllm_config,
|
|
prefix='').eval().cuda()
|
|
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=0,
|
|
num_piecewise_graphs_seen=0,
|
|
num_piecewise_capturable_graphs_seen=0,
|
|
num_backend_compilations=0,
|
|
num_cudagraph_captured=0,
|
|
):
|
|
outputs.append(
|
|
run_model(vllm_config, model, inputs, cudagraph_runtime_mode))
|
|
|
|
# piecewise compile without CUDA graph
|
|
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
|
level=CompilationLevel.PIECEWISE,
|
|
use_cudagraph=False,
|
|
splitting_ops=["silly.attention"],
|
|
))
|
|
cudagraph_runtime_mode = CUDAGraphMode.PIECEWISE
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
model = SimpleModelWithTwoGraphs(mlp_size=MLP_SIZE,
|
|
hidden_size=HIDDEN_SIZE,
|
|
vllm_config=vllm_config,
|
|
prefix='').eval().cuda()
|
|
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=2,
|
|
num_piecewise_graphs_seen=6,
|
|
num_piecewise_capturable_graphs_seen=4,
|
|
num_backend_compilations=4,
|
|
num_cudagraph_captured=0, # no cudagraph captured
|
|
):
|
|
outputs.append(
|
|
run_model(vllm_config, model, inputs, cudagraph_runtime_mode))
|
|
|
|
# Generally don't expect outputs with and without inductor
|
|
# to be bitwise equivalent
|
|
assert torch.allclose(outputs[0], outputs[1])
|
|
|
|
# Expect bitwise equivalence using inductor w/ and w/o cudagraph
|
|
assert torch.equal(outputs[0], outputs[2])
|