Files
vllm/vllm/platforms/neuron.py
2025-07-07 04:32:32 +00:00

152 lines
5.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import enum
import os
from functools import lru_cache
from typing import TYPE_CHECKING, Optional
from vllm import envs
from vllm.logger import init_logger
from vllm.utils import DEFAULT_MAX_NUM_BATCHED_TOKENS
from .interface import Platform, PlatformEnum
if TYPE_CHECKING:
from vllm.config import VllmConfig
else:
VllmConfig = None
logger = init_logger(__name__)
class NeuronFramework(enum.Enum):
TRANSFORMERS_NEURONX = "transformers-neuronx"
NEURONX_DISTRIBUTED_INFERENCE = "neuronx-distributed-inference"
class NeuronPlatform(Platform):
_enum = PlatformEnum.NEURON
device_name: str = "neuron"
device_type: str = "neuron"
ray_device_key: str = "neuron_cores"
supported_quantization: list[str] = ["neuron_quant", "fbgemm_fp8"]
dist_backend: str = "gloo"
device_control_env_var: str = "NEURON_RT_VISIBLE_CORES"
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
return "neuron"
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
return False
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
parallel_config = vllm_config.parallel_config
if parallel_config.worker_cls == "auto":
parallel_config.worker_cls = \
"vllm.worker.neuron_worker.NeuronWorker"
if parallel_config.world_size > 1:
parallel_config.distributed_executor_backend = "uni"
if vllm_config.cache_config and vllm_config.model_config:
# neuron needs block_size = max_model_len
vllm_config.cache_config.block_size = \
vllm_config.model_config.max_model_len # type: ignore
if vllm_config.model_config and vllm_config.model_config.use_mla:
logger.info(
"MLA is enabled on a non-GPU platform; forcing chunked "
"prefill and prefix caching to be disabled.")
vllm_config.scheduler_config.enable_chunked_prefill = False
vllm_config.scheduler_config.chunked_prefill_enabled = False
vllm_config.scheduler_config.max_num_batched_tokens = max(
vllm_config.scheduler_config.max_model_len,
DEFAULT_MAX_NUM_BATCHED_TOKENS)
@classmethod
def is_pin_memory_available(cls) -> bool:
logger.warning("Pin memory is not supported on Neuron.")
return False
@classmethod
def get_device_communicator_cls(cls) -> str:
if envs.VLLM_USE_V1:
return "vllm.distributed.device_communicators.neuron_communicator.NeuronCommunicator" # noqa
else:
return Platform.get_device_communicator_cls()
@classmethod
def use_all_gather(cls) -> bool:
return True
@classmethod
@lru_cache
def is_neuronx_distributed_inference(cls) -> bool:
try:
import neuronx_distributed_inference
except ImportError:
neuronx_distributed_inference = None
return neuronx_distributed_inference is not None
@classmethod
@lru_cache
def is_transformers_neuronx(cls) -> bool:
try:
import transformers_neuronx
except ImportError:
transformers_neuronx = None
return transformers_neuronx is not None
def get_neuron_framework_to_use(self):
"""Return the specified framework if corresponding installations are
available.
If no framework is specified, use neuronx-distributed-inference by
default.
If that's unavailable, check and switch to transformers-neuronx.
"""
if not self.is_neuron():
raise AssertionError(
f"Neuron Framework unavailable for platform: {self}")
tnx_installed = self.is_transformers_neuronx()
nxd_installed = self.is_neuronx_distributed_inference()
specified_framework = os.environ.get("VLLM_NEURON_FRAMEWORK")
tnx_framework = NeuronFramework.TRANSFORMERS_NEURONX.value
nxd_framework = NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE.value
if specified_framework == tnx_framework and tnx_installed:
return self.TRANSFORMERS_NEURONX
if ((specified_framework == nxd_framework and nxd_installed)
or (specified_framework is None and nxd_installed)):
return NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE
if specified_framework is None and tnx_installed:
return NeuronFramework.TRANSFORMERS_NEURONX
return None
def use_neuronx_distributed(self):
"""
Return True if the framework determined in get_neuron_framework_to_use()
is NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE, False otherwise. This
is used to select the Neuron model framework and framework-specific
configuration to apply during model compilation.
"""
nxd_framework = NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE
return self.get_neuron_framework_to_use() == nxd_framework
def use_transformers_neuronx(self):
"""
Return True if the framework determined in get_neuron_framework_to_use()
is NeuronFramework.TRANSFORMERS_NEURONX, False otherwise. This is used
to select the Neuron model framework and framework-specific
configuration to apply during model compilation.
"""
return self.get_neuron_framework_to_use(
) == NeuronFramework.TRANSFORMERS_NEURONX