mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Signed-off-by: dbyoung18 <yang5.yang@intel.com> Signed-off-by: Kunshang Ji <kunshang.ji@intel.com> Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
152 lines
5.5 KiB
Python
152 lines
5.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import enum
|
|
import os
|
|
from functools import lru_cache
|
|
from typing import TYPE_CHECKING, Optional
|
|
|
|
from vllm import envs
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import DEFAULT_MAX_NUM_BATCHED_TOKENS
|
|
|
|
from .interface import Platform, PlatformEnum
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import VllmConfig
|
|
else:
|
|
VllmConfig = None
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class NeuronFramework(enum.Enum):
|
|
TRANSFORMERS_NEURONX = "transformers-neuronx"
|
|
NEURONX_DISTRIBUTED_INFERENCE = "neuronx-distributed-inference"
|
|
|
|
|
|
class NeuronPlatform(Platform):
|
|
_enum = PlatformEnum.NEURON
|
|
device_name: str = "neuron"
|
|
device_type: str = "neuron"
|
|
ray_device_key: str = "neuron_cores"
|
|
supported_quantization: list[str] = ["neuron_quant", "fbgemm_fp8"]
|
|
dist_backend: str = "gloo"
|
|
device_control_env_var: str = "NEURON_RT_VISIBLE_CORES"
|
|
|
|
@classmethod
|
|
def get_device_name(cls, device_id: int = 0) -> str:
|
|
return "neuron"
|
|
|
|
@classmethod
|
|
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
|
|
return False
|
|
|
|
@classmethod
|
|
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
|
|
parallel_config = vllm_config.parallel_config
|
|
if parallel_config.worker_cls == "auto":
|
|
parallel_config.worker_cls = \
|
|
"vllm.worker.neuron_worker.NeuronWorker"
|
|
|
|
if parallel_config.world_size > 1:
|
|
parallel_config.distributed_executor_backend = "uni"
|
|
|
|
if vllm_config.cache_config and vllm_config.model_config:
|
|
# neuron needs block_size = max_model_len
|
|
vllm_config.cache_config.block_size = \
|
|
vllm_config.model_config.max_model_len # type: ignore
|
|
|
|
if vllm_config.model_config and vllm_config.model_config.use_mla:
|
|
logger.info(
|
|
"MLA is enabled on a non-GPU platform; forcing chunked "
|
|
"prefill and prefix caching to be disabled.")
|
|
vllm_config.scheduler_config.enable_chunked_prefill = False
|
|
vllm_config.scheduler_config.chunked_prefill_enabled = False
|
|
vllm_config.scheduler_config.max_num_batched_tokens = max(
|
|
vllm_config.scheduler_config.max_model_len,
|
|
DEFAULT_MAX_NUM_BATCHED_TOKENS)
|
|
|
|
@classmethod
|
|
def is_pin_memory_available(cls) -> bool:
|
|
logger.warning("Pin memory is not supported on Neuron.")
|
|
return False
|
|
|
|
@classmethod
|
|
def get_device_communicator_cls(cls) -> str:
|
|
if envs.VLLM_USE_V1:
|
|
return "vllm.distributed.device_communicators.neuron_communicator.NeuronCommunicator" # noqa
|
|
else:
|
|
return Platform.get_device_communicator_cls()
|
|
|
|
@classmethod
|
|
def use_all_gather(cls) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
@lru_cache
|
|
def is_neuronx_distributed_inference(cls) -> bool:
|
|
try:
|
|
import neuronx_distributed_inference
|
|
except ImportError:
|
|
neuronx_distributed_inference = None
|
|
return neuronx_distributed_inference is not None
|
|
|
|
@classmethod
|
|
@lru_cache
|
|
def is_transformers_neuronx(cls) -> bool:
|
|
try:
|
|
import transformers_neuronx
|
|
except ImportError:
|
|
transformers_neuronx = None
|
|
return transformers_neuronx is not None
|
|
|
|
def get_neuron_framework_to_use(self):
|
|
"""Return the specified framework if corresponding installations are
|
|
available.
|
|
|
|
If no framework is specified, use neuronx-distributed-inference by
|
|
default.
|
|
If that's unavailable, check and switch to transformers-neuronx.
|
|
"""
|
|
if not self.is_neuron():
|
|
raise AssertionError(
|
|
f"Neuron Framework unavailable for platform: {self}")
|
|
|
|
tnx_installed = self.is_transformers_neuronx()
|
|
nxd_installed = self.is_neuronx_distributed_inference()
|
|
|
|
specified_framework = os.environ.get("VLLM_NEURON_FRAMEWORK")
|
|
tnx_framework = NeuronFramework.TRANSFORMERS_NEURONX.value
|
|
nxd_framework = NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE.value
|
|
if specified_framework == tnx_framework and tnx_installed:
|
|
return self.TRANSFORMERS_NEURONX
|
|
|
|
if ((specified_framework == nxd_framework and nxd_installed)
|
|
or (specified_framework is None and nxd_installed)):
|
|
return NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE
|
|
|
|
if specified_framework is None and tnx_installed:
|
|
return NeuronFramework.TRANSFORMERS_NEURONX
|
|
|
|
return None
|
|
|
|
def use_neuronx_distributed(self):
|
|
"""
|
|
Return True if the framework determined in get_neuron_framework_to_use()
|
|
is NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE, False otherwise. This
|
|
is used to select the Neuron model framework and framework-specific
|
|
configuration to apply during model compilation.
|
|
"""
|
|
nxd_framework = NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE
|
|
return self.get_neuron_framework_to_use() == nxd_framework
|
|
|
|
def use_transformers_neuronx(self):
|
|
"""
|
|
Return True if the framework determined in get_neuron_framework_to_use()
|
|
is NeuronFramework.TRANSFORMERS_NEURONX, False otherwise. This is used
|
|
to select the Neuron model framework and framework-specific
|
|
configuration to apply during model compilation.
|
|
"""
|
|
return self.get_neuron_framework_to_use(
|
|
) == NeuronFramework.TRANSFORMERS_NEURONX
|