Files
vllm/tests/kernels/moe/modular_kernel_tools/parallel_utils.py
2025-10-19 03:06:32 -07:00

135 lines
3.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import dataclasses
import os
import traceback
from collections.abc import Callable
from typing import Any, Concatenate
import torch
from torch.multiprocessing import spawn # pyright: ignore[reportPrivateImportUsage]
from typing_extensions import ParamSpec
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.distributed import init_distributed_environment, initialize_model_parallel
from vllm.utils.network_utils import get_open_port
## Parallel Processes Utils
P = ParamSpec("P")
@dataclasses.dataclass
class ProcessGroupInfo:
world_size: int
world_local_size: int
rank: int
node_rank: int
local_rank: int
device: torch.device
def _set_vllm_config(
vllm_config: VllmConfig, world_size: int, rank: int, local_rank: int
):
import tempfile
temp_file = tempfile.mkstemp()[1]
with set_current_vllm_config(vllm_config):
init_distributed_environment(
world_size=world_size,
rank=rank,
distributed_init_method=f"file://{temp_file}",
local_rank=local_rank,
backend="nccl",
)
initialize_model_parallel(
tensor_model_parallel_size=vllm_config.parallel_config.tensor_parallel_size,
pipeline_model_parallel_size=vllm_config.parallel_config.pipeline_parallel_size,
)
cpu_group = torch.distributed.new_group(list(range(world_size)), backend="gloo")
return cpu_group
def _worker_parallel_launch(
local_rank: int,
world_size: int,
world_local_size: int,
node_rank: int,
init_method: str,
worker: Callable[Concatenate[ProcessGroupInfo, VllmConfig | None, Any, P], None],
vllm_config: VllmConfig | None,
env_dict: dict | None,
*args: P.args,
**kwargs: P.kwargs,
) -> None:
rank = node_rank * world_local_size + local_rank
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
torch.distributed.init_process_group(
backend="cpu:gloo,cuda:nccl",
init_method=init_method,
rank=rank,
world_size=world_size,
device_id=device,
)
barrier = torch.tensor([rank], device=device)
torch.distributed.all_reduce(barrier)
if env_dict is not None:
os.environ.update(env_dict)
cpu_group = None
if vllm_config is not None:
cpu_group = _set_vllm_config(vllm_config, world_size, rank, local_rank)
try:
worker(
ProcessGroupInfo(
world_size=world_size,
world_local_size=world_local_size,
rank=rank,
node_rank=node_rank,
local_rank=local_rank,
device=device,
),
vllm_config,
cpu_group,
*args,
**kwargs,
)
except Exception as ex:
print(ex)
traceback.print_exc()
raise
finally:
torch.distributed.destroy_process_group()
def parallel_launch_with_config(
world_size: int,
worker: Callable[Concatenate[ProcessGroupInfo, VllmConfig, Any, P], None],
vllm_config: VllmConfig,
env_dict: dict[Any, Any],
*args: P.args,
**kwargs: P.kwargs,
) -> None:
assert not kwargs
spawn(
_worker_parallel_launch,
args=(
world_size,
world_size,
0,
f"tcp://{os.getenv('LOCALHOST', 'localhost')}:{get_open_port()}",
worker,
vllm_config,
env_dict,
)
+ args,
nprocs=world_size,
join=True,
)