Files
vllm/examples/offline_inference/basic/basic.py
Alexander Matveev 79acf80471 Fast decode prepare path for prepare_inputs logic
Signed-off-by: Alexander Matveev <alexm@neuralmagic.com>
2025-05-08 17:26:00 +00:00

35 lines
997 B
Python

# SPDX-License-Identifier: Apache-2.0
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=10)
def main():
# Create an LLM.
llm = LLM(model="facebook/opt-125m", disable_cascade_attn=True)
# Generate texts from the prompts.
# The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
if __name__ == "__main__":
main()