Files
vllm/tests/entrypoints/test_renderer.py
2025-09-10 08:44:47 +00:00

334 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import io
from dataclasses import dataclass
from typing import Optional
from unittest.mock import AsyncMock, MagicMock
import pybase64
import pytest
import torch
from vllm.entrypoints.renderer import CompletionRenderer, RenderConfig
from vllm.inputs.data import is_embeds_prompt
@dataclass
class MockModelConfig:
max_model_len: int = 100
encoder_config: Optional[dict] = None
class MockTokenizerResult:
def __init__(self, input_ids):
self.input_ids = input_ids
@pytest.fixture
def mock_model_config():
return MockModelConfig()
@pytest.fixture
def mock_tokenizer():
tokenizer = MagicMock()
return tokenizer
@pytest.fixture
def mock_async_tokenizer():
async_tokenizer = AsyncMock()
return async_tokenizer
@pytest.fixture
def renderer(mock_model_config, mock_tokenizer):
return CompletionRenderer(model_config=mock_model_config,
tokenizer=mock_tokenizer,
async_tokenizer_pool={})
class TestRenderPrompt:
"""Test Category A: Basic Functionality Tests"""
@pytest.mark.asyncio
async def test_token_input(self, renderer):
tokens = [101, 7592, 2088]
results = await renderer.render_prompt(
prompt_or_prompts=tokens, config=RenderConfig(max_length=100))
assert len(results) == 1
assert results[0]["prompt_token_ids"] == tokens
@pytest.mark.asyncio
async def test_token_list_input(self, renderer):
token_lists = [[101, 7592, 2088], [102, 1234, 5678, 9012], [103, 4567]]
results = await renderer.render_prompt(
prompt_or_prompts=token_lists, config=RenderConfig(max_length=100))
assert len(results) == 3
assert results[0]["prompt_token_ids"] == [101, 7592, 2088]
assert results[1]["prompt_token_ids"] == [102, 1234, 5678, 9012]
assert results[2]["prompt_token_ids"] == [103, 4567]
@pytest.mark.asyncio
async def test_text_input(self, renderer, mock_async_tokenizer):
mock_async_tokenizer.return_value = MockTokenizerResult(
[101, 7592, 2088])
renderer.async_tokenizer_pool[
renderer.tokenizer] = mock_async_tokenizer
results = await renderer.render_prompt(
prompt_or_prompts="Hello world",
config=RenderConfig(max_length=100))
assert len(results) == 1
assert results[0]["prompt_token_ids"] == [101, 7592, 2088]
mock_async_tokenizer.assert_called_once()
@pytest.mark.asyncio
async def test_text_list_input(self, renderer, mock_async_tokenizer):
mock_async_tokenizer.return_value = MockTokenizerResult(
[101, 7592, 2088])
renderer.async_tokenizer_pool[
renderer.tokenizer] = mock_async_tokenizer
text_list_input = ["Hello world", "How are you?", "Good morning"]
results = await renderer.render_prompt(
prompt_or_prompts=text_list_input,
config=RenderConfig(max_length=100))
assert len(results) == 3
for result in results:
assert result["prompt_token_ids"] == [101, 7592, 2088]
assert mock_async_tokenizer.call_count == 3
@pytest.mark.asyncio
async def test_no_truncation(self, renderer, mock_async_tokenizer):
mock_async_tokenizer.return_value = MockTokenizerResult(
[101, 7592, 2088])
renderer.async_tokenizer_pool[
renderer.tokenizer] = mock_async_tokenizer
results = await renderer.render_prompt(
prompt_or_prompts="Hello world",
config=RenderConfig(max_length=100))
assert len(results) == 1
call_args = mock_async_tokenizer.call_args
assert "truncation" not in call_args.kwargs or call_args.kwargs[
"truncation"] is False
@pytest.mark.asyncio
async def test_truncation_positive(self, renderer, mock_async_tokenizer):
mock_async_tokenizer.return_value = MockTokenizerResult(
[101, 7592, 2088]) # Truncated
renderer.async_tokenizer_pool[
renderer.tokenizer] = mock_async_tokenizer
results = await renderer.render_prompt(prompt_or_prompts="Hello world",
config=RenderConfig(
max_length=100,
truncate_prompt_tokens=50))
assert len(results) == 1
call_args = mock_async_tokenizer.call_args
assert call_args.kwargs["truncation"] is True
assert call_args.kwargs["max_length"] == 50
@pytest.mark.asyncio
async def test_truncation_negative(self, renderer, mock_async_tokenizer):
# Test that negative truncation uses model's max_model_len
mock_async_tokenizer.return_value = MockTokenizerResult(
[101, 7592, 2088]) # Truncated to max_model_len
renderer.async_tokenizer_pool[
renderer.tokenizer] = mock_async_tokenizer
results = await renderer.render_prompt(prompt_or_prompts="Hello world",
config=RenderConfig(
max_length=200,
truncate_prompt_tokens=-1))
assert len(results) == 1
call_args = mock_async_tokenizer.call_args
assert call_args.kwargs["truncation"] is True
assert call_args.kwargs["max_length"] == 100 # model's max_model_len
@pytest.mark.asyncio
async def test_token_truncation_last_elements(self, renderer):
# Test that token truncation keeps the last N elements
long_tokens = [100, 101, 102, 103, 104, 105, 106, 107, 108,
109] # 10 tokens
results = await renderer.render_prompt(prompt_or_prompts=long_tokens,
config=RenderConfig(
max_length=100,
truncate_prompt_tokens=5))
assert len(results) == 1
# Should keep the last 5 tokens: [105, 106, 107, 108, 109]
assert results[0]["prompt_token_ids"] == [105, 106, 107, 108, 109]
@pytest.mark.asyncio
async def test_max_length_exceeded(self, renderer):
long_tokens = list(range(150)) # Exceeds max_model_len=100
with pytest.raises(ValueError, match="maximum context length"):
await renderer.render_prompt(prompt_or_prompts=long_tokens,
config=RenderConfig(max_length=100))
@pytest.mark.asyncio
async def test_no_tokenizer_for_text(self, mock_model_config):
renderer_no_tokenizer = CompletionRenderer(
model_config=mock_model_config,
tokenizer=None,
async_tokenizer_pool={})
with pytest.raises(ValueError, match="No tokenizer available"):
await renderer_no_tokenizer.render_prompt(
prompt_or_prompts="Hello world",
config=RenderConfig(max_length=100))
@pytest.mark.asyncio
async def test_token_input_with_needs_detokenization(
self, renderer, mock_async_tokenizer):
# When needs_detokenization=True for token inputs, renderer should
# use the async tokenizer to decode and include the original text
# in the returned prompt object.
mock_async_tokenizer.decode = AsyncMock(return_value="decoded text")
renderer.async_tokenizer_pool[
renderer.tokenizer] = mock_async_tokenizer
tokens = [1, 2, 3, 4]
results = await renderer.render_prompt(
prompt_or_prompts=tokens,
config=RenderConfig(needs_detokenization=True),
)
assert len(results) == 1
assert results[0]["prompt_token_ids"] == tokens
assert results[0]["prompt"] == "decoded text"
mock_async_tokenizer.decode.assert_awaited_once()
class TestRenderEmbedPrompt:
def _create_test_embed_bytes(self, tensor: torch.Tensor) -> bytes:
"""Helper to create base64-encoded tensor bytes"""
buffer = io.BytesIO()
torch.save(tensor, buffer)
buffer.seek(0)
return pybase64.b64encode(buffer.read())
@pytest.mark.asyncio
async def test_single_prompt_embed(self, renderer):
# Create a test tensor
test_tensor = torch.randn(10, 768, dtype=torch.float32)
embed_bytes = self._create_test_embed_bytes(test_tensor)
results = await renderer.render_prompt_and_embeds(
prompt_embeds=embed_bytes,
config=RenderConfig(cache_salt="test_salt"),
)
assert len(results) == 1
assert is_embeds_prompt(results[0])
assert torch.allclose(results[0]["prompt_embeds"], test_tensor)
assert results[0]["cache_salt"] == "test_salt"
@pytest.mark.asyncio
async def test_multiple_prompt_embeds(self, renderer):
# Create multiple test tensors
test_tensors = [
torch.randn(8, 512, dtype=torch.float32),
torch.randn(12, 512, dtype=torch.float32),
]
embed_bytes_list = [
self._create_test_embed_bytes(t) for t in test_tensors
]
results = await renderer.render_prompt_and_embeds(
prompt_embeds=embed_bytes_list,
config=RenderConfig(),
)
assert len(results) == 2
for i, result in enumerate(results):
assert is_embeds_prompt(result)
assert torch.allclose(result["prompt_embeds"], test_tensors[i])
@pytest.mark.asyncio
async def test_prompt_embed_truncation(self, renderer):
# Create tensor with more tokens than truncation limit
test_tensor = torch.randn(20, 768, dtype=torch.float32)
embed_bytes = self._create_test_embed_bytes(test_tensor)
results = await renderer.render_prompt_and_embeds(
prompt_embeds=embed_bytes,
config=RenderConfig(truncate_prompt_tokens=10),
)
assert len(results) == 1
# Should keep last 10 tokens
expected = test_tensor[-10:]
assert torch.allclose(results[0]["prompt_embeds"], expected)
@pytest.mark.asyncio
async def test_prompt_embed_different_dtypes(self, renderer):
# Test different supported dtypes
dtypes = [torch.float32, torch.float16, torch.bfloat16]
for dtype in dtypes:
test_tensor = torch.randn(5, 256, dtype=dtype)
embed_bytes = self._create_test_embed_bytes(test_tensor)
results = await renderer.render_prompt_and_embeds(
prompt_embeds=embed_bytes,
config=RenderConfig(),
)
assert len(results) == 1
assert results[0]["prompt_embeds"].dtype == dtype
@pytest.mark.asyncio
async def test_prompt_embed_squeeze_batch_dim(self, renderer):
# Test tensor with batch dimension gets squeezed
test_tensor = torch.randn(1, 10, 768, dtype=torch.float32)
embed_bytes = self._create_test_embed_bytes(test_tensor)
results = await renderer.render_prompt_and_embeds(
prompt_embeds=embed_bytes,
config=RenderConfig(),
)
assert len(results) == 1
# Should be squeezed to 2D
assert results[0]["prompt_embeds"].shape == (10, 768)
@pytest.mark.asyncio
async def test_both_prompts_and_embeds(self, renderer,
mock_async_tokenizer):
# Set up text tokenization
mock_async_tokenizer.return_value = MockTokenizerResult(
[101, 102, 103])
renderer.async_tokenizer_pool[
renderer.tokenizer] = mock_async_tokenizer
# Create embed
test_tensor = torch.randn(5, 256, dtype=torch.float32)
embed_bytes = self._create_test_embed_bytes(test_tensor)
results = await renderer.render_prompt_and_embeds(
prompt_or_prompts="Hello world",
prompt_embeds=embed_bytes,
config=RenderConfig(),
)
assert len(results) == 2
# First should be embed prompt
assert is_embeds_prompt(results[0])
# Second should be tokens prompt
assert "prompt_token_ids" in results[1]
assert results[1]["prompt_token_ids"] == [101, 102, 103]