Files
vllm/csrc/cpu/dnnl_helper.hpp
2025-07-10 15:59:04 +00:00

207 lines
6.9 KiB
C++

#ifndef DNNL_HELPER_HPP
#define DNNL_HELPER_HPP
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include "oneapi/dnnl/dnnl.hpp"
namespace {
template <typename T>
struct DNNLType {
static constexpr dnnl::memory::data_type type =
dnnl::memory::data_type::undef;
};
template <>
struct DNNLType<int8_t> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s8;
};
template <>
struct DNNLType<int32_t> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s32;
};
template <>
struct DNNLType<float> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f32;
};
template <>
struct DNNLType<c10::BFloat16> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::bf16;
};
template <>
struct DNNLType<c10::Half> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f16;
};
template <typename T>
constexpr inline dnnl::memory::data_type get_dnnl_type() {
return DNNLType<std::decay_t<T>>::type;
}
}; // namespace
template <bool InputNoScale>
class DNNLPrimitiveHelper {
public:
// I8 input GEMM kernel (C = a_scales * A @ (b_scales * B^T) + bias)
// A: [M, K], row-major
// B: [K, N], column-major
// C: [M, N], row-major
// bias: [N], row-major, optional
// a_scales: [MS]
// b_scales: [NS]
// Note: Due to the limitation of oneDNN
// (https://github.com/oneapi-src/oneDNN/issues/1636), the quantized bias is
// not supported.
template <typename OutputT, typename BiasT>
static void gemm_s8s8_jit(const int8_t* a, const int8_t* b, OutputT* c,
const BiasT* bias, dnnl_dim_t M, dnnl_dim_t N,
dnnl_dim_t K, const float* a_scales,
const float* b_scales, dnnl_dim_t MS,
dnnl_dim_t NS) {
auto&& OutputType = get_dnnl_type<OutputT>();
auto&& BiasType = get_dnnl_type<BiasT>();
dnnl::memory::desc a_md({M, K}, dnnl::memory::data_type::s8, {K, 1});
dnnl::memory::desc b_md({K, N}, dnnl::memory::data_type::s8, {1, K});
dnnl::memory::desc c_md({M, N}, OutputType, {N, 1});
dnnl::primitive_attr attr;
if constexpr (!InputNoScale) {
if (MS == 1) {
// per-tensor
attr.set_scales_mask(DNNL_ARG_SRC, 0);
} else {
// per-token
TORCH_CHECK(false, "per-token quantization is unsupported.");
}
}
if (NS == 1) {
// per-tensor
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 0);
} else {
// per-channel
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 2);
}
dnnl::matmul::primitive_desc matmul_pd;
// Create memory descriptors with format_tag::any for the primitive. This
// enables the matmul primitive to choose memory layouts for an
// optimized primitive implementation, and these layouts may differ from the
// ones provided by the user.
#ifdef __aarch64__
auto mat_src_md = dnnl::memory::desc({M, K}, dnnl::memory::data_type::s8,
dnnl::memory::format_tag::any);
auto mat_weights_md = dnnl::memory::desc(
{K, N}, dnnl::memory::data_type::s8, dnnl::memory::format_tag::any);
auto mat_dst_md =
dnnl::memory::desc({M, N}, OutputType, dnnl::memory::format_tag::any);
if (bias) {
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), mat_src_md,
mat_weights_md, bias_md,
mat_dst_md, attr);
} else {
matmul_pd = dnnl::matmul::primitive_desc(
default_engine(), mat_src_md, mat_weights_md, mat_dst_md, attr);
}
#else
if (bias) {
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
bias_md, c_md, attr);
} else {
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
c_md, attr);
}
#endif
dnnl::matmul matmul(matmul_pd);
auto& engine = default_engine();
dnnl::memory a_m(a_md, engine, (void*)a);
dnnl::memory b_m(b_md, engine, (void*)b);
dnnl::memory c_m(c_md, engine, (void*)c);
dnnl::memory a_scales_m({{MS}, dnnl::memory::data_type::f32, {1}}, engine,
(void*)a_scales);
dnnl::memory b_scales_m({{NS}, dnnl::memory::data_type::f32, {1}}, engine,
(void*)b_scales);
auto& stream = default_stream();
auto mat_src_mem = a_m;
auto mat_weights_mem = b_m;
auto mat_dst_mem = c_m;
#ifdef __aarch64__
if (matmul_pd.weights_desc() != b_m.get_desc()) {
mat_weights_mem = dnnl::memory(matmul_pd.weights_desc(), engine);
dnnl::reorder(b_m, mat_weights_mem).execute(stream, b_m, mat_weights_mem);
}
#endif
if constexpr (InputNoScale) {
if (bias) {
dnnl::memory::desc bias_md({N}, BiasType, {1});
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
}
} else {
if (bias) {
dnnl::memory::desc bias_md({N}, BiasType, {1});
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
}
}
stream.wait();
}
private:
static dnnl::engine& default_engine() {
static dnnl::engine engine(dnnl::engine::kind::cpu, 0);
return engine;
}
static dnnl::stream& default_stream() {
static dnnl::stream stream(default_engine());
return stream;
}
};
#endif