Files
vllm/vllm/model_executor/layers/fused_moe/layer.py
2025-07-01 07:25:03 +00:00

1768 lines
73 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from abc import abstractmethod
from collections.abc import Iterable
from dataclasses import dataclass
from enum import Enum
from typing import Callable, Literal, Optional, Union, overload
import torch
import torch.nn.functional as F
from compressed_tensors.quantization import (QuantizationArgs,
QuantizationStrategy,
QuantizationType)
from torch.nn.parameter import UninitializedParameter
import vllm.envs as envs
from vllm.config import ParallelConfig, get_current_vllm_config
from vllm.distributed import (get_dp_group, get_ep_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce)
from vllm.distributed.eplb.eplb_state import EplbState
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.logger import init_logger
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
is_rocm_aiter_moe_enabled)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.platforms.interface import CpuArchEnum
from vllm.utils import direct_register_custom_op, has_deep_ep, has_pplx
if current_platform.is_cuda_alike():
from .fused_batched_moe import BatchedTritonExperts
from .fused_moe import TritonExperts, fused_experts
from .modular_kernel import (FusedMoEModularKernel,
FusedMoEPermuteExpertsUnpermute,
FusedMoEPrepareAndFinalize)
if has_pplx():
from .pplx_prepare_finalize import PplxPrepareAndFinalize
if has_deep_ep():
from .deepep_ht_prepare_finalize import DeepEPHTPrepareAndFinalize
from .deepep_ll_prepare_finalize import (DEEPEP_QUANT_BLOCK_SIZE,
DeepEPLLPrepareAndFinalize)
else:
fused_experts = None # type: ignore
FusedMoEPermuteExpertsUnpermute = None # type: ignore
FusedMoEPrepareAndFinalize = None # type: ignore
if is_rocm_aiter_moe_enabled():
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa: E501
rocm_aiter_grouped_topk as grouped_topk)
elif current_platform.is_cpu():
pass
else:
from vllm.model_executor.layers.fused_moe.fused_moe import grouped_topk
if current_platform.is_tpu():
from .moe_pallas import fused_moe as fused_moe_pallas
else:
fused_moe_pallas = None # type: ignore
logger = init_logger(__name__)
@dataclass
class FusedMoEParallelConfig:
tp_size: int
dp_size: int
ep_size: int
tp_rank: int
dp_rank: int
ep_rank: int
use_ep: bool # whether to use EP or not
@property
def use_all2all_kernels(self):
return self.dp_size > 1 and self.use_ep
@property
def use_pplx_kernels(self):
return (self.use_all2all_kernels
and envs.VLLM_ALL2ALL_BACKEND == "pplx")
@property
def use_deepep_ht_kernels(self):
return (self.use_all2all_kernels
and envs.VLLM_ALL2ALL_BACKEND == "deepep_high_throughput")
@property
def use_deepep_ll_kernels(self):
return (self.use_all2all_kernels
and envs.VLLM_ALL2ALL_BACKEND == "deepep_low_latency")
@staticmethod
def make(tp_size_: int, dp_size_: int,
vllm_parallel_config: ParallelConfig) -> "FusedMoEParallelConfig":
"""
Determine MoE parallel configuration. Based on the input tp_size_,
dp_size_, ep_size_ and vllm's parallel config, determine what
level's of parallelism to use in the fused moe layer.
Args:
tp_size_ (int): tp_size passed into the FusedMoE constructor.
dp_size_ (int): dp_size passed into the FusedMoE constructor.
ep_size_ (int): ep_size passed into the FusedMoE constructor.
vllm_parallel_config (ParallelConfig): vllm's parallel config
object.
Examples:
When there is no parallelism requested, i.e. tp_size_ = dp_size_ = 1,
we simply return the sizes unaltered and the ranks set to 0.
Expert Parallelism is considered only when either dp_size_ or tp_size_
is non trivial.
When TP = 2, DP = 1 and EP = False, the configuration on different
devices,
- device 0 : TP = {2, 0} DP = {1, 0} EP = {1, 0} //
legend : {size, rank}
- device 1 : TP = {2, 1} DP = {1, 0} EP = {1, 0}
- Comment : Tensors are sharded across 2 devices.
When TP = 1, DP = 2 and EP = False, the configuration on different
devices,
- device 0 : TP = {2, 0} DP = {2, 0} EP = {1, 0}
- device 1 : TP = {2, 1} DP = {2, 1} EP = {1, 0}
- Comment: There are 2 engine instances and the tensors are sharded
across 2 decvices.
When TP = 2, DP = 2 and EP = False, the configuration on different
devices,
- device 0: TP = {4, 0} DP = {2, 0} EP = {1, 0}
- device 1: TP = {4, 1} DP = {2, 0} EP = {1, 0}
- device 2: TP = {4, 2} DP = {2, 1} EP = {1, 0}
- device 3: TP = {4, 3} DP = {2, 1} EP = {1, 0}
- Comment: There are 2 engine instances and the tensors are sharded
across 4 devices.
When, TP = 2, DP = 1 and EP = True, the configuration on different
devices,
- device 0: TP = {1, 0} DP = {1, 0} EP = {2, 0}
- device 1: TP = {1, 0} DP = {1, 0} EP = {2, 1}
- Comment: The experts are split between the 2 devices.
When, TP = 1, DP = 2 and EP = True, the configuration on different
devices,
- device 0: TP = {1, 0} DP = {2, 0} EP = {2, 0}
- device 1: TP = {1, 0} DP = {2, 1} EP = {2, 1}
- Comment: There are 2 engine instances and the experts are split
between the 2 devices.
When TP = 2, DP = 2 and EP = True, the configuration on different
devices,
- device 0: TP = {1, 0} DP = {2, 0} EP = {4, 0}
- device 1: TP = {1, 0} DP = {2, 0} EP = {4, 1}
- device 2: TP = {1, 0} DP = {2, 1} EP = {4, 2}
- device 3: TP = {1, 0} DP = {2, 1} EP = {4, 3}
- Comment: There are 2 engine instances and the experts are split
between the 4 devices.
"""
def flatten_tp_across_dp(dp_rank: int):
tp_rank = 0 if tp_size_ == 1 else get_tensor_model_parallel_rank()
# There are actually dp_size_ * tp_size_ devices. Update tp_size
# and tp_rank so we shard across all devices.
tp_size = dp_size_ * tp_size_
tp_rank = dp_rank * tp_size_ + tp_rank
return tp_size, tp_rank
use_ep = (dp_size_ * tp_size_ > 1
and vllm_parallel_config.enable_expert_parallel)
dp_size = dp_size_
dp_rank = get_dp_group().rank_in_group if dp_size > 1 else 0
tp_size, tp_rank = flatten_tp_across_dp(dp_rank)
if not use_ep:
return FusedMoEParallelConfig(tp_size=tp_size,
tp_rank=tp_rank,
dp_size=dp_size,
dp_rank=dp_rank,
ep_size=1,
ep_rank=0,
use_ep=False)
# DP + EP / TP + EP / DP + TP + EP
assert use_ep
# In EP, each device owns a set of experts fully. There is no tensor
# parallel update tp_size, tp_rank, ep_size and ep_rank to reflect that.
ep_size = tp_size
ep_rank = tp_rank
return FusedMoEParallelConfig(tp_size=1,
tp_rank=0,
dp_size=dp_size,
dp_rank=dp_rank,
ep_size=ep_size,
ep_rank=ep_rank,
use_ep=True)
# Adapted from pplx-kernels tests/all_to_all_utils.py
@dataclass
class MoEConfig:
num_experts: int
experts_per_token: int
hidden_dim: int
num_local_experts: int
moe_parallel_config: FusedMoEParallelConfig
in_dtype: torch.dtype # The activation type.
quant_dtype: torch.dtype = None
# TODO: add more quantization params, blocked, per-token, etc.
block_size: int = 128
max_num_tokens: int = envs.VLLM_MOE_DP_CHUNK_SIZE
def __post_init__(self):
if self.dp_size > 1:
logger.debug("Using MOEConfig::max_num_tokens=%d",
self.max_num_tokens)
@property
def tp_size(self):
return self.moe_parallel_config.tp_size
@property
def dp_size(self):
return self.moe_parallel_config.dp_size
@property
def ep_size(self):
return self.moe_parallel_config.ep_size
@property
def tp_rank(self):
return self.moe_parallel_config.tp_rank
@property
def dp_rank(self):
return self.moe_parallel_config.dp_rank
@property
def ep_rank(self):
return self.moe_parallel_config.ep_rank
@property
def use_ep(self):
return self.moe_parallel_config.use_ep
@property
def use_pplx_kernels(self):
return self.moe_parallel_config.use_pplx_kernels
@property
def use_deepep_ht_kernels(self):
return self.moe_parallel_config.use_deepep_ht_kernels
@property
def use_deepep_ll_kernels(self):
return self.moe_parallel_config.use_deepep_ll_kernels
class FusedMoeWeightScaleSupported(Enum):
TENSOR = "tensor"
CHANNEL = "channel"
GROUP = "group"
BLOCK = "block"
def get_quant_config_input_activations(
quant_config: Optional[QuantizationConfig]
) -> Optional[QuantizationArgs]:
if (quant_config is not None and hasattr(quant_config, 'target_scheme_map')
and "Linear" in quant_config.target_scheme_map and
"input_activations" in quant_config.target_scheme_map["Linear"]):
return quant_config.target_scheme_map["Linear"].get(
"input_activations")
else:
return None
class FusedMoEMethodBase(QuantizeMethodBase):
moe: MoEConfig
@abstractmethod
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size_per_partition: int,
params_dtype: torch.dtype, **extra_weight_attrs):
raise NotImplementedError
def init_prepare_finalize(self, moe: MoEConfig,
quant_config: Optional[QuantizationConfig]):
all2all_manager = get_ep_group().device_communicator.all2all_manager
assert all2all_manager is not None
self.moe = moe
quant_dtype = None
act_quant_block_size = None
from vllm.model_executor.layers.quantization.fp8 import Fp8Config
if isinstance(quant_config, Fp8Config):
act_quant_block_size = quant_config.weight_block_size
quant_dtype = torch.float8_e4m3fn
prepare_finalize: Optional[Union[PplxPrepareAndFinalize,
DeepEPHTPrepareAndFinalize,
DeepEPLLPrepareAndFinalize]] = None
if moe.use_pplx_kernels:
all_to_all_args = dict(
max_num_tokens=moe.max_num_tokens,
num_experts=moe.num_experts,
experts_per_token=moe.experts_per_token, # topk
rank=all2all_manager.rank,
world_size=all2all_manager.world_size,
# dp_size actually means tp_size, bug in pplx kernels
dp_size=all2all_manager.tp_group.world_size,
hidden_dim=moe.hidden_dim,
hidden_dim_bytes=moe.hidden_dim * moe.quant_dtype.itemsize,
# For blocked per token: set to
# ceil_div(hidden_dim, block_size) * sizeof(float32)
# For per-token: set to sizeof(float32)
hidden_dim_scale_bytes=(
0 if moe.quant_dtype.itemsize != 1 else
((moe.hidden_dim + moe.block_size - 1) // moe.block_size *
torch.float32.itemsize)),
)
# Intranode pplx a2a takes a group name while internode does not.
if not all2all_manager.internode:
all_to_all_args[
"group_name"] = all2all_manager.cpu_group.group_name
handle = all2all_manager.get_handle(all_to_all_args)
input_activations = get_quant_config_input_activations(
quant_config)
prepare_finalize = PplxPrepareAndFinalize(
handle,
max_num_tokens=moe.max_num_tokens,
world_size=all2all_manager.world_size,
rank=all2all_manager.rank,
# dp_size actually means tp_size, bug in pplx kernels
dp_size=all2all_manager.tp_group.world_size,
quant_dtype=moe.quant_dtype,
per_act_token=(input_activations.strategy
== QuantizationStrategy.TOKEN
if input_activations is not None else False),
)
elif moe.use_deepep_ht_kernels:
assert moe.dp_size == all2all_manager.dp_world_size
all_to_all_args = dict()
handle = all2all_manager.get_handle(all_to_all_args)
prepare_finalize = DeepEPHTPrepareAndFinalize(
handle,
world_size=all2all_manager.world_size,
rank=all2all_manager.rank,
dp_size=all2all_manager.dp_world_size,
rank_expert_offset=all2all_manager.rank *
moe.num_local_experts,
quant_dtype=quant_dtype,
block_shape=act_quant_block_size,
)
elif moe.use_deepep_ll_kernels:
assert moe.dp_size == all2all_manager.dp_world_size
all_to_all_args = dict(
max_num_tokens_per_dp_rank=moe.max_num_tokens,
token_hidden_size=moe.hidden_dim,
num_ep_ranks=all2all_manager.world_size,
num_global_experts=moe.num_experts,
num_local_experts=moe.num_experts //
all2all_manager.world_size)
handle = all2all_manager.get_handle(all_to_all_args)
# Note : We may want to use FP8 dispatch even otherwise just to
# reduce datamovement
assert act_quant_block_size is not None
use_fp8_dispatch = (quant_dtype == current_platform.fp8_dtype()
and act_quant_block_size[1]
== DEEPEP_QUANT_BLOCK_SIZE)
# Note (varun): Whether to use FP8 dispatch or not needs some
# profiling. Turning it off for now.
prepare_finalize = DeepEPLLPrepareAndFinalize(
handle,
world_size=all2all_manager.world_size,
dp_size=all2all_manager.dp_world_size,
max_tokens_per_rank=moe.max_num_tokens,
quant_dtype=quant_dtype,
block_shape=act_quant_block_size,
use_fp8_dispatch=use_fp8_dispatch,
)
self.topk_indices_dtype = None
if prepare_finalize is not None:
self.topk_indices_dtype = prepare_finalize.topk_indices_dtype()
experts = self.select_gemm_impl(prepare_finalize, moe)
self.fused_experts = FusedMoEModularKernel(
prepare_finalize,
experts,
)
def select_gemm_impl(
self, prepare_finalize: FusedMoEPrepareAndFinalize,
moe: Optional[MoEConfig]) -> FusedMoEPermuteExpertsUnpermute:
# based on the all2all implementation, select the appropriate
# gemm implementation
raise NotImplementedError(
"Subclass must select appropriate gemm implementation"
" based on the prepare_finalize")
@abstractmethod
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> torch.Tensor:
raise NotImplementedError
@CustomOp.register("unquantized_fused_moe")
class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
"""MoE method without quantization."""
def __init__(self, moe: MoEConfig):
super().__init__()
self.fused_experts = fused_experts # type: ignore
self.topk_indices_dtype = None
self.moe = moe
self.rocm_aiter_moe_enabled = is_rocm_aiter_moe_enabled()
if self.rocm_aiter_moe_enabled:
from .rocm_aiter_fused_moe import rocm_aiter_fused_experts
self.rocm_aiter_fused_experts = rocm_aiter_fused_experts
else:
self.rocm_aiter_fused_experts = None # type: ignore
def select_gemm_impl(self, prepare_finalize: FusedMoEPrepareAndFinalize,
moe: Optional[MoEConfig]):
assert self.fused_experts == fused_experts
all2all_manager = get_ep_group().device_communicator.all2all_manager
assert all2all_manager is not None
experts: Optional[FusedMoEPermuteExpertsUnpermute] = None
use_batched_experts = prepare_finalize.max_num_tokens_per_rank(
) is not None
if use_batched_experts:
logger.debug("BatchedTritonExperts %s", self.moe)
assert self.moe.dp_size == all2all_manager.dp_world_size
experts = BatchedTritonExperts(
max_num_tokens=self.moe.max_num_tokens,
world_size=all2all_manager.world_size,
# dp_size actually means tp_size, bug in pplx kernels
dp_size=all2all_manager.tp_group.world_size,
use_fp8_w8a8=False,
use_int8_w8a8=False,
use_int8_w8a16=False,
use_int4_w4a16=False,
block_shape=None,
per_channel_quant=False,
)
else:
logger.debug("TritonExperts %s", self.moe)
experts = TritonExperts(
use_fp8_w8a8=False,
use_int8_w8a8=False,
use_int8_w8a16=False,
use_int4_w4a16=False,
block_shape=None,
per_channel_quant=False,
)
return experts
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size_per_partition: int,
params_dtype: torch.dtype, **extra_weight_attrs):
# Fused gate_up_proj (column parallel)
w13_weight = torch.nn.Parameter(torch.empty(
num_experts,
2 * intermediate_size_per_partition,
hidden_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
# down_proj (row parallel)
w2_weight = torch.nn.Parameter(torch.empty(
num_experts,
hidden_size,
intermediate_size_per_partition,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
def _maybe_pad_weight(self, weight: torch.Tensor) -> torch.Tensor:
# Pad the weight tensor. This is an optimization on ROCm platform, which
# can benefit from tensors located far enough from one another in memory
if (envs.VLLM_ROCM_MOE_PADDING and current_platform.is_rocm()
and weight.stride(-1) == 1
and (weight.stride(-2) * weight.element_size()) % 512 == 0):
num_pad = 256 // weight.element_size()
weight = F.pad(weight, (0, num_pad), "constant", 0)[..., :-num_pad]
torch.cuda.empty_cache()
return weight
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
super().process_weights_after_loading(layer)
# Padding the weight for better performance on ROCm
layer.w13_weight.data = self._maybe_pad_weight(layer.w13_weight.data)
layer.w2_weight.data = self._maybe_pad_weight(layer.w2_weight.data)
# Lazy import to avoid importing triton.
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
shuffle_weights)
if self.rocm_aiter_moe_enabled:
shuffled_w13, shuffled_w2 = shuffle_weights(
layer.w13_weight.data, layer.w2_weight.data)
layer.w13_weight.data = shuffled_w13
layer.w2_weight.data = shuffled_w2
if current_platform.is_cpu():
if current_platform.get_cpu_architecture() == CpuArchEnum.X86:
from vllm.model_executor.layers.fused_moe import cpu_fused_moe
dtype = layer.w13_weight.dtype
if (envs.VLLM_CPU_SGL_KERNEL
and torch._C._cpu._is_amx_tile_supported()
and dtype == torch.bfloat16):
packed_w13_weight = torch.ops._C.convert_weight_packed(
layer.w13_weight)
assert packed_w13_weight.size() == layer.w13_weight.size()
layer.w13_weight.copy_(packed_w13_weight)
del packed_w13_weight
packed_w2_weight = torch.ops._C.convert_weight_packed(
layer.w2_weight)
assert packed_w2_weight.size() == layer.w2_weight.size()
layer.w2_weight.copy_(packed_w2_weight)
layer.cpu_fused_moe = cpu_fused_moe.SGLFusedMOE(layer)
else:
layer.cpu_fused_moe = cpu_fused_moe.IPEXFusedMOE(layer)
else:
raise NotImplementedError("CPU MOE only supports x86 arch.")
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if enable_eplb:
raise NotImplementedError(
"EPLB not supported for `UnquantizedFusedMoEMethod` yet.")
return self.forward(
x=x,
layer=layer,
router_logits=router_logits,
top_k=top_k,
renormalize=renormalize,
use_grouped_topk=use_grouped_topk,
topk_group=topk_group,
num_expert_group=num_expert_group,
global_num_experts=global_num_experts,
expert_map=expert_map,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input)
def forward_cuda(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
) -> torch.Tensor:
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
indices_type=self.topk_indices_dtype)
if self.rocm_aiter_moe_enabled:
assert expert_map is None
return self.rocm_aiter_fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input)
else:
return self.fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
expert_map=expert_map,
)
def forward_cpu(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
**kwargs,
):
return layer.cpu_fused_moe(
layer,
x,
use_grouped_topk,
top_k,
router_logits,
renormalize,
topk_group,
num_expert_group,
global_num_experts,
expert_map,
custom_routing_function,
scoring_func,
e_score_correction_bias,
apply_router_weight_on_input,
activation,
)
def forward_hpu(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
) -> torch.Tensor:
assert not use_grouped_topk
assert num_expert_group is None
assert topk_group is None
assert custom_routing_function is None
assert layer is not None
assert apply_router_weight_on_input is False
if scoring_func != "softmax":
raise NotImplementedError(
"Only softmax scoring function is supported for HPU.")
if e_score_correction_bias is not None:
raise NotImplementedError(
"Expert score correction bias is not supported for HPU.")
return layer.hpu_fused_moe(x, layer.w13_weight, layer.w2_weight,
router_logits, top_k)
def forward_tpu(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
) -> torch.Tensor:
assert not use_grouped_topk
assert num_expert_group is None
assert topk_group is None
assert custom_routing_function is None
assert apply_router_weight_on_input is False
if scoring_func != "softmax":
raise NotImplementedError(
"Only softmax scoring function is supported for TPU.")
if e_score_correction_bias is not None:
raise NotImplementedError(
"Expert score correction bias is not supported for TPU.")
assert activation == "silu", f"{activation} is not supported for TPU."
return fused_moe_pallas(hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk=top_k,
gating_output=router_logits,
global_num_experts=global_num_experts,
expert_map=expert_map,
renormalize=renormalize)
if current_platform.is_tpu():
forward_native = forward_tpu
elif current_platform.is_cpu():
forward_native = forward_cpu
else:
forward_native = forward_cuda
def determine_expert_map(
ep_size: int, ep_rank: int,
global_num_experts: int) -> tuple[int, Optional[torch.Tensor]]:
"""
Calculates how many experts should be assigned to each rank for EP and
creates a mapping from global to local expert index. Experts are
distributed evenly across ranks. Any remaining are assigned to the
last rank.
Args:
ep_size (int): The size of the expert parallel group
global_num_experts (int): The total number of experts in the model.
Returns:
tuple[int, Optional[torch.Tensor]]: A tuple containing:
- local_num_experts (int): The number of experts assigned
to the current rank.
- expert_map (Optional[torch.Tensor]): A tensor of shape
(global_num_experts,) mapping from global to local index.
Contains -1 for experts not assigned to the current rank.
Returns None if ep_size is 1.
"""
assert ep_size > 0
if ep_size == 1:
return (global_num_experts, None)
local_num_experts = global_num_experts // ep_size
# Create a tensor of size num_experts filled with -1
expert_map = torch.full((global_num_experts, ), -1, dtype=torch.int32)
# Create a expert map for the local experts
if ep_rank < (ep_size - 1):
# Each non-last rank gets local_num_experts experts.
expert_map[ep_rank * local_num_experts:
(ep_rank + 1) * local_num_experts] = \
torch.arange(0, local_num_experts, dtype=torch.int32)
else:
# All remaining experts are assigned to the last rank.
local_num_experts = (global_num_experts - ep_rank * local_num_experts)
expert_map[-local_num_experts:] = \
torch.arange(0, local_num_experts, dtype=torch.int32)
return (local_num_experts, expert_map)
class FusedMoE(torch.nn.Module):
"""FusedMoE layer for MoE models.
This layer contains both MergedColumnParallel weights (gate_up_proj /
w13) and RowParallelLinear weights (down_proj/ w2).
Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
copy that naming convention here and handle any remapping in the
load_weights function in each model implementation.
Args:
num_experts: Number of experts in the model
top_k: Number of experts selected for each token
hidden_size: Input hidden state size of the transformer
intermediate_size: Intermediate size of the experts
params_dtype: Data type for the parameters.
reduce_results: Whether to all all_reduce on the output of the layer
renomalize: Whether to renormalize the logits in the fused_moe kernel
quant_config: Quantization configure.
enable_eplb: Whether to enable expert parallelism load balancer.
"""
def __init__(
self,
num_experts: int, # Global number of experts
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = False,
renormalize: bool = True,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
tp_size: Optional[int] = None,
ep_size: Optional[int] = None,
dp_size: Optional[int] = None,
prefix: str = "",
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
num_redundant_experts: int = 0,
):
super().__init__()
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
vllm_config = get_current_vllm_config()
self.moe_parallel_config: FusedMoEParallelConfig = (
FusedMoEParallelConfig.make(
tp_size_=(tp_size if tp_size is not None else
get_tensor_model_parallel_world_size()),
dp_size_=(dp_size if dp_size is not None else
get_dp_group().world_size),
vllm_parallel_config=vllm_config.parallel_config))
self.global_num_experts = num_experts + num_redundant_experts
# For smuggling this layer into the fused moe custom op
compilation_config = vllm_config.compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError("Duplicate layer name: {}".format(prefix))
compilation_config.static_forward_context[prefix] = self
self.layer_name = prefix
self.enable_eplb = enable_eplb
self.expert_load_view: Optional[torch.Tensor] = None
self.logical_to_physical_map: Optional[torch.Tensor] = None
self.logical_replica_count: Optional[torch.Tensor] = None
# Determine expert maps
if self.use_ep:
if self.enable_eplb:
assert self.global_num_experts % self.ep_size == 0, \
"EPLB currently only supports even distribution of " \
"experts across ranks."
else:
assert num_redundant_experts == 0, \
"Redundant experts are only supported with EPLB."
self.local_num_experts, self.expert_map = determine_expert_map(
ep_size=self.ep_size,
ep_rank=self.ep_rank,
global_num_experts=self.global_num_experts)
else:
self.local_num_experts, self.expert_map = (self.global_num_experts,
None)
self.top_k = top_k
assert intermediate_size % self.tp_size == 0
self.hidden_size = hidden_size
self.intermediate_size_per_partition = intermediate_size // self.tp_size
self.reduce_results = reduce_results
self.renormalize = renormalize
self.use_grouped_topk = use_grouped_topk
if self.use_grouped_topk:
assert num_expert_group is not None and topk_group is not None
self.num_expert_group = num_expert_group
self.topk_group = topk_group
self.custom_routing_function = custom_routing_function
self.scoring_func = scoring_func
self.e_score_correction_bias = e_score_correction_bias
self.apply_router_weight_on_input = apply_router_weight_on_input
self.activation = activation
if self.scoring_func != "softmax" and not self.use_grouped_topk:
raise ValueError("Only softmax scoring function is supported for "
"non-grouped topk.")
if current_platform.is_hpu():
from vllm_hpu_extension.ops import DynamicFusedMOE
self.hpu_fused_moe = DynamicFusedMOE(self.global_num_experts)
# Only support float8 for now.
quant_dtype = params_dtype
if quant_config is not None:
input_activations = get_quant_config_input_activations(
quant_config)
if (input_activations is not None
and input_activations.num_bits == 8
and input_activations.type == QuantizationType.FLOAT):
quant_dtype = torch.float8_e4m3fn
moe = MoEConfig(
num_experts=self.global_num_experts,
experts_per_token=top_k,
hidden_dim=hidden_size,
num_local_experts=self.local_num_experts,
moe_parallel_config=self.moe_parallel_config,
in_dtype=params_dtype,
quant_dtype=quant_dtype,
max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
)
self.moe_config = moe
self.quant_config = quant_config
# Note: get_quant_method will look at the layer's local_num_experts
# for heuristic purposes, so it must be initialized first.
quant_method: Optional[QuantizeMethodBase] = None
quant_method = (UnquantizedFusedMoEMethod(moe) if quant_config is None
else quant_config.get_quant_method(self, prefix))
assert quant_method is not None
assert isinstance(quant_method, FusedMoEMethodBase)
self.quant_method = quant_method
if self.enable_eplb:
from vllm.model_executor.layers.quantization.fp8 import (
Fp8MoEMethod)
if not isinstance(quant_method, Fp8MoEMethod):
# TODO: Add support for additional quantization methods.
# The implementation for other quantization methods does not
# contain essential differences, but the current quant API
# design causes duplicated work when extending to new
# quantization methods, so I'm leaving it for now.
# If you plan to add support for more quantization methods,
# please refer to the implementation in `Fp8MoEMethod`.
raise NotImplementedError("EPLB is only supported for FP8 "
"quantization for now.")
moe_quant_params = {
"num_experts": self.local_num_experts,
"hidden_size": hidden_size,
"intermediate_size_per_partition":
self.intermediate_size_per_partition,
"params_dtype": params_dtype,
"weight_loader": self.weight_loader,
}
# need full intermediate size pre-sharding for WNA16 act order
if (self.quant_method.__class__.__name__
in ("GPTQMarlinMoEMethod",
"CompressedTensorsWNA16MarlinMoEMethod",
"CompressedTensorsWNA16MoEMethod")):
moe_quant_params["intermediate_size_full"] = intermediate_size
self.quant_method.create_weights(layer=self, **moe_quant_params)
# Chunked all2all staging tensor
self.batched_hidden_states: Optional[torch.Tensor] = None
self.batched_router_logits: Optional[torch.Tensor] = None
if (self.moe_parallel_config.use_pplx_kernels
or self.moe_parallel_config.use_deepep_ll_kernels):
act_dtype = vllm_config.model_config.dtype
self.batched_hidden_states = torch.zeros(
(envs.VLLM_MOE_DP_CHUNK_SIZE, self.hidden_size),
dtype=act_dtype,
device=torch.cuda.current_device())
# Note here we use `num_experts` which is logical expert count
self.batched_router_logits = torch.zeros(
(envs.VLLM_MOE_DP_CHUNK_SIZE, num_experts),
dtype=act_dtype,
device=torch.cuda.current_device())
@property
def tp_size(self):
return self.moe_parallel_config.tp_size
@property
def dp_size(self):
return self.moe_parallel_config.dp_size
@property
def ep_size(self):
return self.moe_parallel_config.ep_size
@property
def tp_rank(self):
return self.moe_parallel_config.tp_rank
@property
def dp_rank(self):
return self.moe_parallel_config.dp_rank
@property
def ep_rank(self):
return self.moe_parallel_config.ep_rank
@property
def use_ep(self):
return self.moe_parallel_config.use_ep
@property
def use_pplx_kernels(self):
return self.moe_parallel_config.use_pplx_kernels
@property
def use_deepep_ht_kernels(self):
return self.moe_parallel_config.use_deepep_ht_kernels
@property
def use_deepep_ll_kernels(self):
return self.moe_parallel_config.use_deepep_ll_kernels
def _load_per_tensor_weight_scale(self, shard_id: str,
param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
expert_id: int):
param_data = param.data
# for per tensor weight quantization
if shard_id in ("w1", "w3"):
# We have to keep the weight scales of w1 and w3 because
# we need to re-quantize w1/w3 weights after weight loading.
idx = 0 if shard_id == "w1" else 1
param_data[expert_id][idx] = loaded_weight
# If we are in the row parallel case (down_proj)
elif shard_id == "w2":
param_data[expert_id] = loaded_weight
def _load_model_weight_or_group_weight_scale(self,
shard_dim: int,
expert_data: torch.Tensor,
shard_id: str,
loaded_weight: torch.Tensor,
tp_rank: int,
load_full_w2: bool = False):
"""
Load grouped weight scales for group quantization or model weights
:param shard_dim: dimension to shard
:param expert_data: parameter for a particular expert
:param shard_id: either w1, w2, or w3
:param loaded_weight: checkpoint weight to load into the param
:param tp_rank: tensor parallel rank
:param load_full_w2: whether or not the w2 loaded should be sharded.
"""
if shard_id == "w2":
# In the case where we have actorder/g_idx, we do not partition the
# w2 scales, as indicated by `load_full` argument, for all tp cases
self._load_w2(shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
load_full=load_full_w2)
elif shard_id in ("w1", "w3"):
self._load_w13(shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank)
def _load_per_channel_weight_scale(self, expert_data: torch.Tensor,
shard_dim: int, shard_id: str,
loaded_weight: torch.Tensor,
tp_rank: int):
# for per channel weight quantization
if shard_id == "w2":
expert_data.copy_(loaded_weight)
elif shard_id in ("w1", "w3"):
self._load_w13(shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank)
def _load_w13(self, expert_data: torch.Tensor, shard_dim: int,
shard_id: str, loaded_weight: torch.Tensor, tp_rank: int):
# Index the loaded weight for tp sharding.
# gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
shard_size = expert_data.shape[shard_dim] // 2
loaded_weight = loaded_weight.narrow(shard_dim, shard_size * tp_rank,
shard_size)
# Narrow parameter and load.
# w1, gate_proj: Load into first logical weight of w13.
if shard_id == "w1":
expert_data = expert_data.narrow(shard_dim, 0, shard_size)
# w3, up_proj: Load into second logical weight of w13.
else:
assert shard_id == "w3"
expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
expert_data.copy_(loaded_weight)
def _load_w2(self,
expert_data: torch.Tensor,
shard_dim: int,
loaded_weight: torch.Tensor,
tp_rank: int,
load_full: bool = False):
# Index the loaded weight for tp sharding.
# down_proj: "RowParallel" so tp sharding on input_dim
# Narrow parameter and load.
shard_size = expert_data.shape[shard_dim]
if not load_full:
loaded_weight = loaded_weight.narrow(shard_dim,
shard_size * tp_rank,
shard_size)
# w2, down_proj: Load into only logical weight of w2.
expert_data.copy_(loaded_weight)
def _load_single_value(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor, expert_id: int):
param_data = param.data
# Input scales can be loaded directly and should be equal.
param_data[expert_id] = loaded_weight
def _load_g_idx(self, shard_id: str, expert_data: torch.Tensor,
shard_dim: int, loaded_weight: torch.Tensor, tp_rank: int):
if shard_id == "w2":
self._load_w2(shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank)
else:
assert shard_id in ("w1", "w3")
expert_data.copy_(loaded_weight)
def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
if self.expert_map is None:
return expert_id
return self.expert_map[expert_id].item()
@overload
def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor, weight_name: str,
shard_id: str, expert_id: int,
return_success: Literal[False]) -> None:
...
@overload
def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor, weight_name: str,
shard_id: str, expert_id: int,
return_success: Literal[True]) -> bool:
...
def weight_loader(self,
param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
weight_name: str,
shard_id: str,
expert_id: int,
return_success: bool = False) -> Optional[bool]:
expert_id = self._map_global_expert_id_to_local_expert_id(expert_id)
if expert_id == -1:
# Failed to load this param since it's not local to this rank
return False if return_success else None
# Hereafter, `expert_id` is local physical id
quant_method_name = self.quant_method.__class__.__name__
# compressed-tensors checkpoints with packed weights are stored flipped
# TODO (mgoin): check self.quant_method.quant_config.quant_format
# against known CompressionFormat enum values that have this quality
if self.quant_method.__class__.__name__ in (
"CompressedTensorsWNA16MarlinMoEMethod",
"CompressedTensorsWNA16MoEMethod"):
loaded_weight = loaded_weight.t().contiguous()
if shard_id not in ("w1", "w2", "w3"):
raise ValueError(f"shard_id must be ['w1','w2','w3'] but "
f"got {shard_id}.")
WEIGHT_SCALE_SUPPORTED = [
e.value for e in FusedMoeWeightScaleSupported
]
# Fetch the dim to shard the parameter/loaded weight
# based on the shard id. This will be whatever
# dimension intermediate_size_per_partition is used.
SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
is_gguf_weight = getattr(param, "is_gguf_weight", False)
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
if is_gguf_weight_type:
param.weight_type = loaded_weight.item()
param.data.copy_(loaded_weight)
return True if return_success else None
# is_transposed: if the dim to shard the weight
# should be flipped. Required by GPTQ, compressed-tensors
# should be whatever dimension intermediate_size_per_partition is
is_transposed = getattr(param, "is_transposed", False)
shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
if is_transposed:
shard_dim = int(not shard_dim)
full_load = len(loaded_weight.shape) == 3
if full_load:
shard_dim += 1
# Materialize GGUF UninitializedParameter
if is_gguf_weight and isinstance(param, UninitializedParameter):
final_shape = list(loaded_weight.shape)
if shard_id in ["w1", "w3"]:
final_shape[1] *= 2
final_shape[shard_dim] = final_shape[shard_dim] // self.tp_size
param.materialize(final_shape, dtype=loaded_weight.dtype)
expert_data = param.data if full_load else param.data[expert_id]
# Case input scale: input_scale loading is only supported for fp8
if "input_scale" in weight_name:
# this is needed for compressed-tensors only
loaded_weight = loaded_weight.to(param.data.device)
if ("compressed" in quant_method_name.lower()
and param.data[expert_id] != 1
and (param.data[expert_id] - loaded_weight).abs() > 1e-5):
raise ValueError(
"input_scales of w1 and w3 of a layer "
f"must be equal. But got {param.data[expert_id]} "
f"vs. {loaded_weight}")
self._load_single_value(param=param,
loaded_weight=loaded_weight,
expert_id=expert_id)
return True if return_success else None
# Case g_idx
if "g_idx" in weight_name:
self._load_g_idx(shard_dim=0,
shard_id=shard_id,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank)
return True if return_success else None
# TODO @dsikka: ModelOpt should follow the proper MoE loading pattern
if "ModelOpt" in quant_method_name:
if ('weight_scale_2' in weight_name
or 'input_scale' in weight_name):
self._load_per_tensor_weight_scale(shard_id=shard_id,
param=param,
loaded_weight=loaded_weight,
expert_id=expert_id)
elif "weight" in weight_name:
self._load_model_weight_or_group_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank)
return True if return_success else None
# Case weight scales, zero_points and offset, weight/input global scales
if ("scale" in weight_name or "zero" in weight_name
or "offset" in weight_name):
# load the weight scales and zp based on the quantization scheme
# supported weight scales/zp can be found in
# FusedMoeWeightScaleSupported
# TODO @dsikka: once hardened, refactor to use vLLM Parameters
# specific to each case
quant_method = getattr(param, "quant_method", None)
if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
self._load_per_channel_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank)
elif quant_method in [
FusedMoeWeightScaleSupported.GROUP.value,
FusedMoeWeightScaleSupported.BLOCK.value,
]:
self._load_model_weight_or_group_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank,
load_full_w2=getattr(param, "load_full_w2", False))
elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
self._load_per_tensor_weight_scale(shard_id=shard_id,
param=param,
loaded_weight=loaded_weight,
expert_id=expert_id)
else:
raise ValueError(
f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}")
return True if return_success else None
# Case weight_shape
if "weight_shape" in weight_name:
# only required by compressed-tensors
self._load_single_value(param=param,
loaded_weight=loaded_weight,
expert_id=expert_id)
return True if return_success else None
# Case model weights
if "weight" in weight_name:
self._load_model_weight_or_group_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank)
return True if return_success else None
return False if return_success else None
def get_expert_weights(self) -> Iterable[torch.Tensor]:
weights = list(self.named_parameters())
assert all(weight.is_contiguous() for _, weight in weights)
# Filter out the non-expert weights.
# `e_score_correction_bias` is a bias for each logical expert,
# with shape (num_logical_experts,), not an expert weight.
NON_EXPERT_WEIGHTS = {
"e_score_correction_bias",
}
return [
weight.view(self.local_num_experts, -1) for name, weight in weights
if name not in NON_EXPERT_WEIGHTS
]
def set_eplb_state(
self,
moe_layer_idx: int,
expert_load_view: torch.Tensor,
logical_to_physical_map: torch.Tensor,
logical_replica_count: torch.Tensor,
) -> None:
"""
Register the EPLB state in this layer.
This is used later in forward pass, where we get the expert mapping
and record the load metrics in `expert_load_view`.
"""
self.expert_load_view = expert_load_view[moe_layer_idx]
self.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
self.logical_replica_count = logical_replica_count[moe_layer_idx]
@staticmethod
def select_experts(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
use_grouped_topk: bool,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
indices_type: Optional[torch.dtype] = None,
enable_eplb: bool = False,
expert_map: Optional[torch.Tensor] = None,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Route the input hidden states to the top-k experts based on the
router logits.
Returns:
(topk_weights, topk_ids) (tuple[torch.Tensor, torch.Tensor]):
The weights and *global physical* expert ids of the top-k experts.
**Compatibility**: When EPLB is not enabled, the returned ids are
equivalent to global logical ids, so should be compatible with
plain MoE implementations without redundant experts.
"""
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
# DeepSeekv2 uses grouped_top_k
if use_grouped_topk:
assert topk_group is not None
assert num_expert_group is not None
topk_weights, topk_ids = grouped_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
num_expert_group=num_expert_group,
topk_group=topk_group,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias)
if indices_type is not None:
topk_ids = topk_ids.to(dtype=indices_type)
elif custom_routing_function is None:
topk_weights, topk_ids, token_expert_indices = fused_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
indices_type=indices_type,
)
else:
topk_weights, topk_ids = custom_routing_function(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize)
if indices_type is not None:
topk_ids = topk_ids.to(dtype=indices_type)
if enable_eplb:
assert expert_load_view is not None
assert logical_to_physical_map is not None
assert logical_replica_count is not None
# 1. Convert the logical expert ids to physical expert ids
# Directly select a random replica for each logical expert
# TODO: maybe optimize this by using specified kernels,
# or compute pseudo-random indices by modulo
# In case `indices_type` is not `torch.long` or `torch.int`,
# e.g. `torch.uint32` as required by dispatch/combine kernels
topk_ids_long = topk_ids.long()
replica_indices = (
torch.rand_like(topk_ids, dtype=torch.float) *
logical_replica_count[topk_ids_long]).long().unsqueeze(-1)
physical_ids = logical_to_physical_map[topk_ids_long].gather(
-1, replica_indices).squeeze(-1)
topk_ids = physical_ids
# 2. Record expert load metrics.
# TODO(bowen): When using `FusedMoEModularKernel`, this
# can be done in a more unified way, since
# `FusedMoEPrepareAndFinalize` will return the expert
# token count, in some cases directly from the kernel.
# However, now there are many code paths not using
# the modular kernel, e.g. calling `fused_experts`,
# so we decide to keep the logic here.
#
# If later refactor moved all the MoE kernel calls
# to the modular kernel, we can move this logic there
# to achieve better efficiency.
# `expert_load_view`: (num_logical_experts,)
# Mask out non-local experts
if expert_map is not None:
topk_ids_local = expert_map[topk_ids]
topk_ids_flatten = topk_ids_local.flatten()
else:
topk_ids_flatten = topk_ids.flatten()
# Should be equivalent to:
# ```
# topk_ids_masked = topk_ids_local[topk_ids_local >= 0]
# expert_load_view += topk_ids_masked.bincount(
# minlength=expert_load_view.shape[0])
# ```
# We use `scatter_add_` since `bincount` cannot be compiled
# Performance optimization:
# `masked_fill` is significantly faster than `masked_select`
invalid_mask = topk_ids_flatten < 0
# Replace invalid expert ids with 0 (just a dummy position)
# to avoid out-of-bounds errors in scatter_add_
index = topk_ids_flatten.masked_fill_(invalid_mask, 0)
# `src` is the valid mask, which is 1 for valid and 0 for invalid
src = ~invalid_mask
expert_load_view.scatter_add_(dim=0,
index=index.long(),
src=src.to(expert_load_view))
topk_ids = topk_ids.to(dtype=indices_type)
return topk_weights, topk_ids
def must_reduce_shared_expert_outputs(self) -> bool:
"""
The shared_experts are typically computed using the RowParallelLinear
layer. The result of this function is typically used as
the reduce_results argument to the module.
When just tensor-parallel is used, it is not required to reduce
the shared_experts results immediately. Instead we reduce at the
once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
With EP and all2all kernels - this is no longer viable as all
GPU ranks in DP, produce the complete set of hidden_states.
Therefore it is required that we reduce the shared_experts output
early.
"""
return (self.use_pplx_kernels or self.use_deepep_ht_kernels
or self.use_deepep_ll_kernels)
def maybe_all_reduce_tensor_model_parallel(
self, final_hidden_states: torch.Tensor):
"""
The pplx combine kernel reduces across GPU ranks by default.
"""
if (self.use_pplx_kernels or self.use_deepep_ht_kernels
or self.use_deepep_ll_kernels):
return final_hidden_states
else:
return tensor_model_parallel_all_reduce(final_hidden_states)
def forward(self, hidden_states: torch.Tensor,
router_logits: torch.Tensor):
return torch.ops.vllm.moe_forward(hidden_states, router_logits,
self.layer_name)
def forward_impl_chunked(self, full_hidden_states: torch.Tensor,
full_router_logits: torch.Tensor):
assert self.batched_hidden_states is not None
assert self.batched_router_logits is not None
assert self.batched_hidden_states.dtype == full_hidden_states.dtype
assert self.batched_router_logits.dtype == full_router_logits.dtype
# Check size compatibility.
assert (
self.batched_hidden_states.size(-1) == full_hidden_states.size(-1))
assert (
self.batched_router_logits.size(-1) == full_router_logits.size(-1))
full_final_hidden_states = torch.empty_like(full_hidden_states)
def process_chunk(chunk_start, chunk_end, skip_result_store=False):
chunk_size = chunk_end - chunk_start
hidden_states = full_hidden_states[chunk_start:chunk_end, :]
router_logits = full_router_logits[chunk_start:chunk_end, :]
assert (self.batched_hidden_states.size(0) # type: ignore
>= chunk_size)
assert (self.batched_router_logits.size(0) # type: ignore
>= chunk_size)
staged_hidden_states = self.batched_hidden_states[:
chunk_size, :] # type: ignore
staged_router_logits = self.batched_router_logits[:
chunk_size, :] # type: ignore
staged_hidden_states.copy_(hidden_states, non_blocking=True)
staged_router_logits.copy_(router_logits, non_blocking=True)
# Matrix multiply.
final_hidden_states = self.quant_method.apply(
layer=self,
x=staged_hidden_states,
router_logits=staged_router_logits,
top_k=self.top_k,
renormalize=self.renormalize,
use_grouped_topk=self.use_grouped_topk,
global_num_experts=self.global_num_experts,
expert_map=self.expert_map,
topk_group=self.topk_group,
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
activation=self.activation,
enable_eplb=self.enable_eplb,
expert_load_view=self.expert_load_view,
logical_to_physical_map=self.logical_to_physical_map,
logical_replica_count=self.logical_replica_count,
)
if not skip_result_store:
full_final_hidden_states[chunk_start:chunk_end, :].copy_(
final_hidden_states, non_blocking=True)
ctx = get_forward_context()
max_tokens_across_dp = ctx.dp_metadata.max_tokens_across_dp_cpu
moe_dp_chunk_size_per_rank = self.moe_config.max_num_tokens
num_tokens = full_hidden_states.size(0)
for chunk_start_ in range(0, max_tokens_across_dp,
moe_dp_chunk_size_per_rank):
chunk_start = chunk_start_
chunk_end = min(chunk_start + moe_dp_chunk_size_per_rank,
max_tokens_across_dp)
# clamp start and end
chunk_start = min(chunk_start, num_tokens - 1)
chunk_end = min(chunk_end, num_tokens)
process_chunk(chunk_start,
chunk_end,
skip_result_store=chunk_start_ >= num_tokens)
return full_final_hidden_states
def forward_impl(self, hidden_states: torch.Tensor,
router_logits: torch.Tensor):
assert self.quant_method is not None
if (self.moe_parallel_config.use_pplx_kernels
or self.moe_parallel_config.use_deepep_ll_kernels):
return self.forward_impl_chunked(hidden_states, router_logits)
do_naive_dispatch_combine: bool = (
self.dp_size > 1
and not self.moe_parallel_config.use_deepep_ht_kernels)
if do_naive_dispatch_combine:
hidden_states, router_logits = get_ep_group().dispatch(
hidden_states, router_logits)
# Matrix multiply.
final_hidden_states = self.quant_method.apply(
layer=self,
x=hidden_states,
router_logits=router_logits,
top_k=self.top_k,
renormalize=self.renormalize,
use_grouped_topk=self.use_grouped_topk,
global_num_experts=self.global_num_experts,
expert_map=self.expert_map,
topk_group=self.topk_group,
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
activation=self.activation,
apply_router_weight_on_input=self.apply_router_weight_on_input,
enable_eplb=self.enable_eplb,
expert_load_view=self.expert_load_view,
logical_to_physical_map=self.logical_to_physical_map,
logical_replica_count=self.logical_replica_count,
)
if do_naive_dispatch_combine:
final_hidden_states = get_ep_group().combine(final_hidden_states)
if self.reduce_results and (self.tp_size > 1 or self.ep_size > 1):
# Default set to False. (May have to add shared expert outputs.
final_hidden_states = self.maybe_all_reduce_tensor_model_parallel(
final_hidden_states)
return final_hidden_states
@classmethod
def make_expert_params_mapping(
cls,
ckpt_gate_proj_name: str,
ckpt_down_proj_name: str,
ckpt_up_proj_name: str,
num_experts: int,
num_redundant_experts: int = 0) -> list[tuple[str, str, int, str]]:
num_physical_experts = num_experts + num_redundant_experts
# In the returned mapping:
# - `expert_id` is the physical expert id
# - `weight_name` contains the weight name of the logical expert
# So that we should map the expert id to logical in `weight_name`
physical_to_logical_map = \
EplbState.build_initial_global_physical_to_logical_map(
num_experts, num_redundant_experts)
return [
# (param_name, weight_name, expert_id, shard_id)
("experts.w13_" if weight_name
in [ckpt_gate_proj_name, ckpt_up_proj_name] else "experts.w2_",
f"experts.{physical_to_logical_map[expert_id]}.{weight_name}.",
expert_id, shard_id) for expert_id in range(num_physical_experts)
for shard_id, weight_name in [
("w1", ckpt_gate_proj_name),
("w2", ckpt_down_proj_name),
("w3", ckpt_up_proj_name),
]
]
def extra_repr(self) -> str:
s = (
f"global_num_experts={self.global_num_experts}, "
f"local_num_experts={self.local_num_experts}, "
f"top_k={self.top_k}, "
f"intermediate_size_per_partition={self.intermediate_size_per_partition}, " # noqa: E501
f"tp_size={self.tp_size},\n"
f"ep_size={self.ep_size}, "
f"reduce_results={self.reduce_results}, "
f"renormalize={self.renormalize}, "
f"use_grouped_topk={self.use_grouped_topk}")
if self.use_grouped_topk:
s += f", num_expert_group={self.num_expert_group}, topk_group={self.topk_group}" # noqa: E501
s += f", scoring_func='{self.scoring_func}', activation='{self.activation}'" # noqa: E501
return s
def moe_forward(hidden_states: torch.Tensor, router_logits: torch.Tensor,
layer_name: str) -> torch.Tensor:
forward_context: ForwardContext = get_forward_context()
self = forward_context.no_compile_layers[layer_name]
assert self.quant_method is not None
return self.forward_impl(hidden_states, router_logits)
def moe_forward_fake(hidden_states: torch.Tensor, router_logits: torch.Tensor,
layer_name: str) -> torch.Tensor:
return torch.empty_like(hidden_states)
direct_register_custom_op(
op_name="moe_forward",
op_func=moe_forward,
mutates_args=["hidden_states"],
fake_impl=moe_forward_fake,
dispatch_key=current_platform.dispatch_key,
tags=(torch.Tag.needs_fixed_stride_order, ),
)