mirror of
https://github.com/vllm-project/vllm.git
synced 2025-11-11 16:50:52 +08:00
214 lines
8.5 KiB
Python
214 lines
8.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# Copyright 2025 the LLAMA4, Meta Inc., vLLM, and HuggingFace Inc. team.
|
|
# All rights reserved.
|
|
#
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections.abc import Iterable
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed.parallel_state import get_pp_group
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.quantization.torchao import TorchAOConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.llama4 import Llama4DecoderLayer, Llama4ForCausalLM
|
|
from vllm.model_executor.models.utils import extract_layer_index
|
|
|
|
from .interfaces import SupportsMultiModal
|
|
from .utils import AutoWeightsLoader, maybe_prefix
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
@support_torch_compile
|
|
class LlamaModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
start_layer_id: int = 0,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
self.validate_and_update_config(start_layer_id, quant_config)
|
|
self.vocab_size = self.config.vocab_size
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.config.vocab_size,
|
|
self.config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "embed_tokens"),
|
|
)
|
|
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
Llama4DecoderLayer(
|
|
vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, f"layers.{i + start_layer_id}"),
|
|
config=self.config,
|
|
)
|
|
for i in range(self.config.num_hidden_layers)
|
|
]
|
|
)
|
|
self.fc = torch.nn.Linear(
|
|
self.config.hidden_size * 2, self.config.hidden_size, bias=False
|
|
)
|
|
self.norm = RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor],
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.get_input_embeddings(input_ids)
|
|
hidden_states = self.fc(torch.cat((inputs_embeds, hidden_states), dim=-1))
|
|
residual = None
|
|
for layer in self.layers:
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
residual,
|
|
)
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states, hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
name = name.removeprefix("model.")
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# if PP disabled then draft will share embed with target
|
|
if get_pp_group().world_size == 1 and "embed_tokens." in name:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
for name in params_dict:
|
|
# if PP disabled then draft will share embed with target
|
|
if get_pp_group().world_size == 1 and "embed_tokens." in name:
|
|
continue
|
|
assert name in loaded_params, f"{name} is not loaded!"
|
|
return loaded_params
|
|
|
|
def validate_and_update_config(
|
|
self, start_layer_id: int, quant_config: Optional[QuantizationConfig] = None
|
|
) -> None:
|
|
# yoco and moe is not supported by draft model yet
|
|
assert self.config.yoco_global_kv_layer is None
|
|
assert self.config.yoco_local_kv_layer is None
|
|
assert len(self.config.moe_layers) == 0
|
|
# draft model layer index is increased by start_layer_id,
|
|
# so we need to pad relevant configs accordingly
|
|
self.config.no_rope_layers = [0] * start_layer_id + self.config.no_rope_layers
|
|
# currently only TorchAO quantization is supported
|
|
if isinstance(quant_config, TorchAOConfig):
|
|
|
|
def pad_layer_name(layer: str) -> str:
|
|
layer_index = extract_layer_index(layer)
|
|
return layer.replace(
|
|
str(layer_index), str(layer_index + start_layer_id)
|
|
)
|
|
|
|
torchao_config = quant_config.torchao_config
|
|
torchao_config.module_fqn_to_config = {
|
|
pad_layer_name(layer): quantization
|
|
for layer, quantization in torchao_config.module_fqn_to_config.items()
|
|
}
|
|
|
|
|
|
class EagleLlama4ForCausalLM(Llama4ForCausalLM):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
nn.Module.__init__(self)
|
|
self.config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
target_layer_num = vllm_config.model_config.get_num_layers(
|
|
vllm_config.parallel_config
|
|
)
|
|
# draft model quantization config may differ from target model
|
|
quant_config = VllmConfig.get_quantization_config(
|
|
vllm_config.speculative_config.draft_model_config, vllm_config.load_config
|
|
)
|
|
self.model = LlamaModel(
|
|
vllm_config=vllm_config,
|
|
prefix="model",
|
|
start_layer_id=target_layer_num,
|
|
quant_config=quant_config,
|
|
)
|
|
logit_scale = getattr(self.config, "logit_scale", 1.0)
|
|
self.logits_processor = LogitsProcessor(
|
|
self.config.vocab_size, scale=logit_scale
|
|
)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.model
|
|
|
|
get_input_embeddings = SupportsMultiModal.get_input_embeddings # type: ignore
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
return self.model(input_ids, positions, hidden_states, inputs_embeds)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> None:
|
|
def transform(inputs):
|
|
name, loaded_weight = inputs
|
|
name, weight = self.permute_qk_weight_for_rotary(name, loaded_weight)
|
|
if "lm_head" not in name:
|
|
name = "model." + name
|
|
return name, weight
|
|
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
# lm_head is tied with target model (Llama4ForCausalLM)
|
|
skip_prefixes=(["lm_head."]),
|
|
)
|
|
loader.load_weights(map(transform, weights))
|