Files
vllm/tests/v1/attention/test_attention_backends.py
2025-07-30 01:45:29 +00:00

477 lines
18 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests for v1 attention backends without GPUModelRunner dependency."""
import pytest
import torch
from tests.v1.attention.utils import (BatchSpec, _Backend,
create_common_attn_metadata,
create_standard_kv_cache_spec,
create_vllm_config,
get_attention_backend)
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, cdiv
from vllm.v1.attention.backends.utils import (CommonAttentionMetadata,
set_kv_cache_layout)
from vllm.v1.kv_cache_interface import FullAttentionSpec
BACKENDS_TO_TEST = [
_Backend.FLASH_ATTN_VLLM_V1, _Backend.FLASHINFER_VLLM_V1,
_Backend.FLEX_ATTENTION, _Backend.TRITON_ATTN_VLLM_V1
]
# Remove flashinfer from the list if it's not available
try:
import flashinfer # noqa: F401
except ImportError:
BACKENDS_TO_TEST.remove(_Backend.FLASHINFER_VLLM_V1)
def _convert_dtype_to_torch(dtype):
"""Convert ModelDType to torch.dtype."""
if isinstance(dtype, str):
if dtype == "auto":
return torch.float16 # Default dtype for testing
elif dtype in STR_DTYPE_TO_TORCH_DTYPE:
return STR_DTYPE_TO_TORCH_DTYPE[dtype]
else:
raise ValueError(f"Unknown dtype: {dtype}")
elif isinstance(dtype, torch.dtype):
return dtype
else:
raise ValueError(f"Unknown dtype: {dtype}")
# Define common batch configurations
BATCH_SPECS = {
"small_decode":
BatchSpec(seq_lens=[32, 40], query_lens=[1, 1]),
"small_prefill":
BatchSpec(seq_lens=[32, 40], query_lens=[8, 8]),
"mixed_small":
BatchSpec(seq_lens=[32, 40, 48, 56], query_lens=[1, 1, 5, 5]),
"medium_decode":
BatchSpec(seq_lens=[128, 256, 512, 1024, 128, 256, 512, 1024],
query_lens=[1, 1, 1, 1, 1, 1, 1, 1]),
"medium_prefill":
BatchSpec(seq_lens=[256, 512, 1024, 2048], query_lens=[16, 16, 16, 16]),
"mixed_medium":
BatchSpec(seq_lens=[512, 1024, 2048, 512, 1024, 2048],
query_lens=[1, 1, 1, 7, 7, 7]),
"large_decode":
BatchSpec(seq_lens=[2048] * 32, query_lens=[1] * 32),
"large_prefill":
BatchSpec(seq_lens=[4096] * 8, query_lens=[32] * 8),
"single_decode":
BatchSpec(seq_lens=[1024], query_lens=[1]),
"single_prefill":
BatchSpec(seq_lens=[1024], query_lens=[64]),
}
def create_dummy_kv_cache(kv_cache_spec: FullAttentionSpec,
device: torch.device,
num_blocks: int = 100) -> torch.Tensor:
"""Create a dummy KV cache tensor for testing."""
kv_cache = torch.randn(
2, # K and V
num_blocks,
kv_cache_spec.block_size,
kv_cache_spec.num_kv_heads,
kv_cache_spec.head_size,
dtype=_convert_dtype_to_torch(kv_cache_spec.dtype),
device=device,
)
return kv_cache
def create_and_prepopulate_kv_cache(
k_contexts: list[torch.Tensor],
v_contexts: list[torch.Tensor],
block_size: int,
num_kv_heads: int,
head_size: int,
dtype: torch.dtype,
device: torch.device,
num_blocks: int,
common_attn_metadata: CommonAttentionMetadata,
randomize_blocks: bool = True) -> torch.Tensor:
"""Create and prepopulate a KV cache with context data.
Args:
k_contexts: List of key context tensors for each sequence
v_contexts: List of value context tensors for each sequence
seq_lens: List of sequence lengths
block_size: Size of each block
num_kv_heads: Number of KV heads
head_size: Size of each head
dtype: Data type for the cache
device: Device to create the cache on
num_blocks: Total number of blocks in the cache
block_table: Block table tensor to populate
randomize_blocks: Whether to randomly permute blocks
or use sequential order
Returns:
Tuple of (kv_cache, updated_block_table)
"""
batch_size = len(k_contexts)
seq_lens = common_attn_metadata.seq_lens_cpu
query_lens = common_attn_metadata.query_start_loc_cpu[
1:] - common_attn_metadata.query_start_loc_cpu[:-1]
context_lens = common_attn_metadata.num_computed_tokens_cpu
block_table = common_attn_metadata.block_table_tensor
slot_mapping = common_attn_metadata.slot_mapping
# Create KV cache
kv_cache = torch.empty(2,
num_blocks,
block_size,
num_kv_heads,
head_size,
dtype=dtype,
device=device)
kv_cache_flat = kv_cache.view(2, -1, num_kv_heads, head_size)
# Populate the cache with the context tokens
# Start from block_id=1 since block_id=0 is considered the null block
start_block_idx = 1
for i in range(batch_size):
k_context, v_context = k_contexts[i], v_contexts[i]
start = start_block_idx * block_size
end = start + k_context.shape[0]
kv_cache_flat[0, start:end, ...] = k_context
kv_cache_flat[1, start:end, ...] = v_context
# Stay block aligned and allocate enough blocks for the new tokens
start_block_idx += cdiv(int(seq_lens[i]), block_size)
blocks_end = start_block_idx
# Permute the context blocks (excluding block 0 which is null)
if randomize_blocks:
perm = torch.randperm(
blocks_end - 1) + 1 # Random permutation starting from block 1
else:
perm = torch.arange(
1, blocks_end) # Sequential order starting from block 1
inv_perm = torch.zeros(blocks_end, dtype=torch.long, device=device)
inv_perm[1:] = torch.argsort(
perm) + 1 # Add 1 to account for starting from block 1
kv_cache[:, 1:blocks_end, ...] = kv_cache[:, perm, ...]
# Construct the right block table
# Start from block_id=1 since block_id=0 is considered the null block
start_block_idx = 1
for i in range(batch_size):
num_blocks_for_seq = cdiv(int(seq_lens[i]), block_size)
start = start_block_idx
end = start + num_blocks_for_seq
block_table[i, :num_blocks_for_seq] = inv_perm[start:end]
start_block_idx += num_blocks_for_seq
# Create a realistic slot mapping that corresponds to the block table
for i in range(batch_size):
token_offsets = torch.arange(int(query_lens[i])) + int(context_lens[i])
block_indices = token_offsets // block_size
token_inter_block_offsets = token_offsets % block_size
start = common_attn_metadata.query_start_loc_cpu[i]
end = common_attn_metadata.query_start_loc_cpu[i + 1]
slot_mapping[start:end] = block_table[
i,
block_indices] * block_size + token_inter_block_offsets.to(device)
return kv_cache
class MockAttentionLayer:
"""A mock attention layer for testing."""
def __init__(self, device: torch.device):
self._q_scale = torch.tensor(1.0, device=device)
self._k_scale = torch.tensor(1.0, device=device)
self._v_scale = torch.tensor(1.0, device=device)
# Add float versions for flashinfer
self._k_scale_float = 1.0
self._v_scale_float = 1.0
def run_attention_backend(backend: _Backend, kv_cache_spec: FullAttentionSpec,
layer_names: list[str], vllm_config,
device: torch.device,
common_attn_metadata: CommonAttentionMetadata,
query: torch.Tensor, key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor) -> torch.Tensor:
"""Run attention computation using the specified backend's AttentionImpl."""
builder_cls, impl_cls = get_attention_backend(backend)
# Mock flashinfer's get_per_layer_parameters if needed
if backend == _Backend.FLASHINFER_VLLM_V1:
import unittest.mock
from vllm.v1.attention.backends.utils import PerLayerParameters
def mock_get_per_layer_parameters(vllm_config, layer_names, impl_cls):
# Return mock parameters for a single layer
head_size = vllm_config.model_config.get_head_size()
return {
layer_name:
PerLayerParameters(
window_left=-1, # No sliding window
logits_soft_cap=0.0, # No soft cap
sm_scale=1.0 / (head_size**0.5) # Standard scale
)
for layer_name in layer_names
}
with unittest.mock.patch(
'vllm.v1.attention.backends.flashinfer.get_per_layer_parameters',
mock_get_per_layer_parameters):
builder = builder_cls(kv_cache_spec, layer_names, vllm_config,
device)
attn_metadata = builder.build(
common_prefix_len=0,
common_attn_metadata=common_attn_metadata,
)
else:
# Build metadata
builder = builder_cls(kv_cache_spec, layer_names, vllm_config, device)
attn_metadata = builder.build(
common_prefix_len=0,
common_attn_metadata=common_attn_metadata,
)
# Instantiate implementation
num_heads = vllm_config.model_config.get_num_attention_heads(
vllm_config.parallel_config)
num_kv_heads = vllm_config.model_config.get_num_kv_heads(
vllm_config.parallel_config)
head_size = vllm_config.model_config.get_head_size()
scale = 1.0 / (head_size**0.5)
impl = impl_cls(
num_heads=num_heads,
head_size=head_size,
scale=scale,
num_kv_heads=num_kv_heads,
alibi_slopes=None,
sliding_window=None,
kv_cache_dtype="auto",
)
# Create mock layer and output buffer
mock_layer = MockAttentionLayer(device)
output = torch.empty_like(query)
# Run forward pass
# NOTE: The query, key, and value are already shaped correctly
# in the calling test function.
output = impl.forward(mock_layer,
query,
key,
value,
kv_cache,
attn_metadata,
output=output)
return output
@pytest.mark.parametrize("batch_spec_name", [
"small_decode", "small_prefill", "mixed_small", "medium_decode",
"medium_prefill", "mixed_medium"
])
@pytest.mark.parametrize("model", ["meta-llama/Meta-Llama-3-8B"])
def test_backend_correctness(batch_spec_name: str, model: str):
"""
Test that all backends produce similar outputs to a reference implementation
using torch.nn.functional.scaled_dot_product_attention.
This test works by:
1. Generating a batch of sequences with specified context and query lengths.
2. Computing a ground-truth attention output using torch.sdpa on
contiguous Q, K, and V tensors.
3. Simulating vLLM's paged KV cache: It takes the context portion of the
K/V tensors and manually places them into a paged buffer according to
the test's (randomly generated) block table.
4. Running each vLLM attention backend with the new queries and the
simulated paged KV cache.
5. Comparing the vLLM backend's output to the ground-truth SDPA output.
"""
batch_spec = BATCH_SPECS[batch_spec_name]
vllm_config = create_vllm_config(model_name=model,
max_model_len=max(batch_spec.seq_lens))
device = torch.device("cuda:0")
kv_cache_spec = create_standard_kv_cache_spec(vllm_config)
# 1. Setup
batch_size = batch_spec.batch_size
seq_lens = batch_spec.seq_lens
query_lens = batch_spec.query_lens
num_q_heads = vllm_config.model_config.get_num_attention_heads(
vllm_config.parallel_config)
num_kv_heads = vllm_config.model_config.get_num_kv_heads(
vllm_config.parallel_config)
head_size = vllm_config.model_config.get_head_size()
dtype = _convert_dtype_to_torch(vllm_config.model_config.dtype)
block_size = vllm_config.cache_config.block_size
scale = 1.0 / (head_size**0.5)
# 2. Generate data and compute SDPA reference output
all_q_vllm, all_k_vllm, all_v_vllm = [], [], []
all_sdpa_outputs = []
k_contexts, v_contexts = [], []
for i in range(batch_size):
s_len = seq_lens[i]
q_len = query_lens[i]
context_len = s_len - q_len
# Generate Q, K, V for the whole sequence to be used in SDPA
q = torch.randn(q_len,
num_q_heads,
head_size,
dtype=dtype,
device=device)
k_full = torch.randn(s_len,
num_kv_heads,
head_size,
dtype=dtype,
device=device)
v_full = torch.randn(s_len,
num_kv_heads,
head_size,
dtype=dtype,
device=device)
# SDPA expects (N, H, L, D), so unsqueeze batch and permute
q_sdpa_in = q.unsqueeze(0).transpose(1, 2)
k_sdpa_in = k_full.unsqueeze(0).transpose(1, 2)
v_sdpa_in = v_full.unsqueeze(0).transpose(1, 2)
if num_q_heads != num_kv_heads:
assert num_q_heads % num_kv_heads == 0, (
f"num_q_heads ({num_q_heads}) must be divisible by "
f"num_kv_heads ({num_kv_heads})")
repeats = num_q_heads // num_kv_heads
k_sdpa_in = k_sdpa_in.repeat_interleave(repeats, dim=1)
v_sdpa_in = v_sdpa_in.repeat_interleave(repeats, dim=1)
# Create causal mask: query token i attends to positions 0 to
# (context_len + i)
kv_len = s_len
offset = context_len
attn_mask = torch.full((q_len, kv_len),
float('-inf'),
device=device,
dtype=dtype)
for i in range(q_len):
attn_mask[i, :offset + i + 1] = 0.0
sdpa_out_i = torch.nn.functional.scaled_dot_product_attention(
q_sdpa_in,
k_sdpa_in,
v_sdpa_in,
attn_mask=attn_mask,
scale=scale,
enable_gqa=True)
# Convert back to (L, H, D)
all_sdpa_outputs.append(sdpa_out_i.transpose(1, 2).squeeze(0))
# Inputs for vLLM backends are just the new tokens
all_q_vllm.append(q)
all_k_vllm.append(k_full[context_len:])
all_v_vllm.append(v_full[context_len:])
# Contextual K/V data used to populate the paged cache
k_contexts.append(k_full[:context_len])
v_contexts.append(v_full[:context_len])
query_vllm = torch.cat(all_q_vllm, dim=0)
key_vllm = torch.cat(all_k_vllm, dim=0)
value_vllm = torch.cat(all_v_vllm, dim=0)
sdpa_output = torch.cat(all_sdpa_outputs, dim=0)
common_attn_metadata = create_common_attn_metadata(
batch_spec, vllm_config.cache_config.block_size, device)
# 3. Simulate Paged KV Cache and a realistic slot_mapping
kv_cache = create_and_prepopulate_kv_cache(
k_contexts=k_contexts,
v_contexts=v_contexts,
block_size=block_size,
num_kv_heads=num_kv_heads,
head_size=head_size,
dtype=dtype,
device=device,
num_blocks=vllm_config.cache_config.num_gpu_blocks or 1000,
common_attn_metadata=common_attn_metadata,
randomize_blocks=True)
# 4. Run vLLM backends and compare
# Note: flex_attention has known Triton kernel compatibility issues
# with test infrastructures
for backend_name in BACKENDS_TO_TEST:
# FlashAttentionm + FlexAttention:
# [2, num_blocks, block_size, num_kv_heads, head_size]
# FlashInfer:
# [num_blocks, 2, block_size, num_kv_heads, head_size]
# Select the appropriate KV cache format for each backend
kv_cache_for_backend = kv_cache
if backend_name == _Backend.FLASHINFER_VLLM_V1:
kv_cache_for_backend = kv_cache.transpose(0, 1)
# For FlashInfer default to HND layout and
kv_cache_for_backend = kv_cache_for_backend.transpose(
2, 3).contiguous().transpose(2, 3)
set_kv_cache_layout("HND")
backend_output = run_attention_backend(backend_name, kv_cache_spec,
["placeholder"], vllm_config,
device, common_attn_metadata,
query_vllm, key_vllm,
value_vllm,
kv_cache_for_backend)
# Check shape and dtype consistency
assert backend_output.shape == sdpa_output.shape, (
f"[{backend_name}] shape {backend_output.shape} != "
f"SDPA shape {sdpa_output.shape}")
assert backend_output.dtype == sdpa_output.dtype, (
f"[{backend_name}] dtype {backend_output.dtype} != "
f"SDPA dtype {sdpa_output.dtype}")
assert torch.isfinite(backend_output).all(), (
f"[{backend_name}] produced non-finite values")
# Check numerical similarity
rtol = 1e-2
atol = 5e-3
if backend_name == _Backend.FLEX_ATTENTION:
atol = 5e-1 # TODO: figure out why flex_attention has such large
# numerical differences for medium_decode, medium_prefill,
# mixed_medium
max_diff = torch.max(torch.abs(backend_output - sdpa_output)).item()
max_rel_diff = torch.max(
torch.abs(backend_output - sdpa_output) /
torch.abs(sdpa_output)).item()
all_close = torch.allclose(backend_output,
sdpa_output,
rtol=rtol,
atol=atol)
if not all_close:
print(f"[{backend_name}] output differs from SDPA baseline. "
f"Max diff: {max_diff:.6f} (rel: {max_rel_diff:.6f})")
print(f"[{backend_name}] output: {backend_output}")
print(f"[{backend_name}] SDPA baseline: {sdpa_output}")
assert all_close, (
f"[{backend_name}] output differs from SDPA baseline. "
f"Max diff: {max_diff:.6f} (rel: {max_rel_diff:.6f})")