mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
1098 lines
38 KiB
Python
1098 lines
38 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import math
|
|
from collections import OrderedDict
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Literal, Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from transformers import BartTokenizer, BatchFeature, PretrainedConfig
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.bart import (BartDecoder, BartEncoder,
|
|
BartParallelLMHead,
|
|
BartScaledWordEmbedding)
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
|
MultiModalKwargsItems)
|
|
from vllm.multimodal.parse import MultiModalDataItems
|
|
from vllm.multimodal.processing import (BaseProcessingInfo,
|
|
EncDecMultiModalProcessor,
|
|
PromptIndexTargets, PromptInsertion,
|
|
PromptUpdate)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import (MultiModalEmbeddings, SupportsMultiModal,
|
|
SupportsV0Only)
|
|
from .utils import AutoWeightsLoader, flatten_bn, merge_multimodal_embeddings
|
|
|
|
|
|
class Florence2ImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- b: Batch size
|
|
- c: Number of channels (3)
|
|
- h: Height of the image
|
|
- w: Width of the image
|
|
"""
|
|
|
|
type: Literal["pixel_values"]
|
|
|
|
data: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("b", 3, "h", "w"),
|
|
]
|
|
|
|
|
|
# ViT implementation are all copied from
|
|
# https://huggingface.co/microsoft/Florence-2-base/blob/main/modeling_florence2.py
|
|
class LearnedAbsolutePositionEmbedding2D(nn.Module):
|
|
"""
|
|
This module learns positional embeddings up to a fixed maximum size.
|
|
"""
|
|
|
|
def __init__(self, embedding_dim=256, num_pos=50):
|
|
super().__init__()
|
|
self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
|
|
self.column_embeddings = nn.Embedding(
|
|
num_pos, embedding_dim - (embedding_dim // 2))
|
|
|
|
def forward(self, pixel_values):
|
|
"""
|
|
pixel_values: (batch_size, height, width, num_channels)
|
|
returns: (batch_size, height, width, embedding_dim * 2)
|
|
"""
|
|
if len(pixel_values.shape) != 4:
|
|
raise ValueError('pixel_values must be a 4D tensor')
|
|
height, width = pixel_values.shape[1:3]
|
|
width_values = torch.arange(width, device=pixel_values.device)
|
|
height_values = torch.arange(height, device=pixel_values.device)
|
|
x_emb = self.column_embeddings(width_values)
|
|
y_emb = self.row_embeddings(height_values)
|
|
# (height, width, embedding_dim * 2)
|
|
pos = torch.cat([
|
|
x_emb.unsqueeze(0).repeat(height, 1, 1),
|
|
y_emb.unsqueeze(1).repeat(1, width, 1)
|
|
],
|
|
dim=-1)
|
|
# (embedding_dim * 2, height, width)
|
|
pos = pos.permute(2, 0, 1)
|
|
pos = pos.unsqueeze(0)
|
|
# (batch_size, embedding_dim * 2, height, width)
|
|
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
|
|
# (batch_size, height, width, embedding_dim * 2)
|
|
pos = pos.permute(0, 2, 3, 1)
|
|
return pos
|
|
|
|
|
|
class PositionalEmbeddingCosine1D(nn.Module):
|
|
"""
|
|
This class implements a very simple positional encoding. It follows closely
|
|
the encoder from the link below:
|
|
https://pytorch.org/tutorials/beginner/translation_transformer.html
|
|
Args:
|
|
embed_dim: The dimension of the embeddings.
|
|
dropout_prob: The dropout probability.
|
|
max_seq_len: The maximum length to precompute the positional encodings.
|
|
"""
|
|
|
|
def __init__(self, embed_dim: int = 512, max_seq_len: int = 1024) -> None:
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.max_seq_len = max_seq_len
|
|
# Generate the sinusoidal arrays.
|
|
factor = math.log(10000)
|
|
denominator = torch.exp(-factor * torch.arange(0, self.embed_dim, 2) /
|
|
self.embed_dim)
|
|
# Matrix where rows correspond to a positional embedding as a function
|
|
# of the position index (i.e., the row index).
|
|
frequencies = \
|
|
torch.arange(0, self.max_seq_len) \
|
|
.reshape(self.max_seq_len, 1) * denominator
|
|
pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
|
|
# Populate uneven entries.
|
|
pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
|
|
pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
|
|
# Save the positional embeddings in a constant buffer.
|
|
# self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)
|
|
self.pos_idx_to_embed = nn.Parameter(pos_idx_to_embed,
|
|
requires_grad=False)
|
|
|
|
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
seq_embeds: The sequence embeddings in order. Allowed size:
|
|
1. [T, D], where T is the length of the sequence, and D is the
|
|
frame embedding dimension.
|
|
2. [B, T, D], where B is the batch size and T and D are the
|
|
same as above.
|
|
Returns a tensor of with the same dimensions as the input: i.e.,
|
|
[1, T, D] or [T, D].
|
|
"""
|
|
shape_len = len(seq_embeds.shape)
|
|
assert 2 <= shape_len <= 3
|
|
len_seq = seq_embeds.size(-2)
|
|
assert len_seq <= self.max_seq_len
|
|
pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :]
|
|
# Adapt pre-computed positional embeddings to the input.
|
|
if shape_len == 3:
|
|
pos_embeds = pos_embeds.view(
|
|
(1, pos_embeds.size(0), pos_embeds.size(1)))
|
|
return pos_embeds
|
|
|
|
|
|
class MySequential(nn.Sequential):
|
|
|
|
def forward(self, *inputs):
|
|
for module in self._modules.values():
|
|
if isinstance(inputs, tuple):
|
|
inputs = module(*inputs)
|
|
else:
|
|
inputs = module(inputs)
|
|
return inputs
|
|
|
|
|
|
class PreNorm(nn.Module):
|
|
|
|
def __init__(self, norm, fn):
|
|
super().__init__()
|
|
self.norm = norm
|
|
self.fn = fn
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
shortcut = x
|
|
if self.norm is not None:
|
|
x, size = self.fn(self.norm(x), *args, **kwargs)
|
|
else:
|
|
x, size = self.fn(x, *args, **kwargs)
|
|
|
|
x = shortcut + x
|
|
|
|
return x, size
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_layer=nn.GELU,
|
|
):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.net = nn.Sequential(
|
|
OrderedDict([("fc1", nn.Linear(in_features, hidden_features)),
|
|
("act", act_layer()),
|
|
("fc2", nn.Linear(hidden_features, out_features))]))
|
|
|
|
def forward(self, x, size):
|
|
return self.net(x), size
|
|
|
|
|
|
class DepthWiseConv2d(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
dim_in,
|
|
kernel_size,
|
|
padding,
|
|
stride,
|
|
bias=True,
|
|
):
|
|
super().__init__()
|
|
self.dw = nn.Conv2d(dim_in,
|
|
dim_in,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
groups=dim_in,
|
|
stride=stride,
|
|
bias=bias)
|
|
|
|
def forward(self, x, size):
|
|
B, N, C = x.shape
|
|
H, W = size
|
|
assert N == H * W
|
|
|
|
x = self.dw(x.transpose(1, 2).view(B, C, H, W))
|
|
size = (x.size(-2), x.size(-1))
|
|
x = x.flatten(2).transpose(1, 2)
|
|
return x, size
|
|
|
|
|
|
class ConvEmbed(nn.Module):
|
|
""" Image to Patch Embedding
|
|
"""
|
|
|
|
def __init__(self,
|
|
patch_size=7,
|
|
in_chans=3,
|
|
embed_dim=64,
|
|
stride=4,
|
|
padding=2,
|
|
norm_layer=None,
|
|
pre_norm=True):
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
|
|
self.proj = nn.Conv2d(in_chans,
|
|
embed_dim,
|
|
kernel_size=patch_size,
|
|
stride=stride,
|
|
padding=padding)
|
|
|
|
dim_norm = in_chans if pre_norm else embed_dim
|
|
self.norm = norm_layer(dim_norm) if norm_layer else None
|
|
|
|
self.pre_norm = pre_norm
|
|
|
|
def forward(self, x, size):
|
|
H, W = size
|
|
if len(x.size()) == 3:
|
|
if self.norm and self.pre_norm:
|
|
x = self.norm(x)
|
|
x = rearrange(x, 'b (h w) c -> b c h w', h=H, w=W)
|
|
|
|
x = self.proj(x)
|
|
|
|
_, _, H, W = x.shape
|
|
x = rearrange(x, 'b c h w -> b (h w) c')
|
|
if self.norm and not self.pre_norm:
|
|
x = self.norm(x)
|
|
|
|
return x, (H, W)
|
|
|
|
|
|
class ChannelAttention(nn.Module):
|
|
|
|
def __init__(self, dim, groups=8, qkv_bias=True):
|
|
super().__init__()
|
|
|
|
self.groups = groups
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
def forward(self, x, size):
|
|
B, N, C = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.groups,
|
|
C // self.groups).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
q = q * (float(N)**-0.5)
|
|
attention = q.transpose(-1, -2) @ k
|
|
attention = attention.softmax(dim=-1)
|
|
x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
|
|
x = x.transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
return x, size
|
|
|
|
|
|
class ChannelBlock(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
groups,
|
|
mlp_ratio=4.,
|
|
qkv_bias=True,
|
|
drop_path_rate=0.,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
conv_at_attn=True,
|
|
conv_at_ffn=True):
|
|
super().__init__()
|
|
|
|
self.conv1 = PreNorm(None, DepthWiseConv2d(
|
|
dim, 3, 1, 1)) if conv_at_attn else None
|
|
self.channel_attn = PreNorm(
|
|
norm_layer(dim),
|
|
ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
|
|
)
|
|
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1,
|
|
1)) if conv_at_ffn else None
|
|
self.ffn = PreNorm(
|
|
norm_layer(dim),
|
|
Mlp(in_features=dim,
|
|
hidden_features=int(dim * mlp_ratio),
|
|
act_layer=act_layer),
|
|
)
|
|
|
|
def forward(self, x, size):
|
|
if self.conv1:
|
|
x, size = self.conv1(x, size)
|
|
x, size = self.channel_attn(x, size)
|
|
|
|
if self.conv2:
|
|
x, size = self.conv2(x, size)
|
|
x, size = self.ffn(x, size)
|
|
|
|
return x, size
|
|
|
|
|
|
def window_partition(x, window_size: int):
|
|
B, H, W, C = x.shape
|
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size,
|
|
C)
|
|
windows = x.permute(0, 1, 3, 2, 4,
|
|
5).contiguous().view(-1, window_size, window_size, C)
|
|
return windows
|
|
|
|
|
|
def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
|
|
B = batch_size
|
|
|
|
x = windows.view(B, H // window_size, W // window_size, window_size,
|
|
window_size, -1)
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
|
return x
|
|
|
|
|
|
class WindowAttention(nn.Module):
|
|
|
|
def __init__(self, dim, num_heads, window_size, qkv_bias=True):
|
|
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.window_size = window_size
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = float(head_dim)**-0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.softmax = nn.Softmax(dim=-1)
|
|
|
|
def forward(self, x, size):
|
|
|
|
H, W = size
|
|
B, L, C = x.shape
|
|
assert L == H * W, "input feature has wrong size"
|
|
|
|
x = x.view(B, H, W, C)
|
|
|
|
pad_l = pad_t = 0
|
|
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
|
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
|
_, Hp, Wp, _ = x.shape
|
|
|
|
x = window_partition(x, self.window_size)
|
|
x = x.view(-1, self.window_size * self.window_size, C)
|
|
|
|
# W-MSA/SW-MSA
|
|
# attn_windows = self.attn(x_windows)
|
|
|
|
B_, N, C = x.shape
|
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
|
|
C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
q = q * self.scale
|
|
attn = (q @ k.transpose(-2, -1))
|
|
attn = self.softmax(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
|
x = self.proj(x)
|
|
|
|
# merge windows
|
|
x = x.view(-1, self.window_size, self.window_size, C)
|
|
x = window_reverse(x, B, self.window_size, Hp, Wp)
|
|
|
|
if pad_r > 0 or pad_b > 0:
|
|
x = x[:, :H, :W, :].contiguous()
|
|
|
|
x = x.view(B, H * W, C)
|
|
|
|
return x, size
|
|
|
|
|
|
class SpatialBlock(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
num_heads,
|
|
window_size,
|
|
mlp_ratio=4.,
|
|
qkv_bias=True,
|
|
drop_path_rate=0.,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
conv_at_attn=True,
|
|
conv_at_ffn=True):
|
|
super().__init__()
|
|
|
|
self.conv1 = PreNorm(None, DepthWiseConv2d(
|
|
dim, 3, 1, 1)) if conv_at_attn else None
|
|
self.window_attn = PreNorm(
|
|
norm_layer(dim),
|
|
WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
|
|
)
|
|
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1,
|
|
1)) if conv_at_ffn else None
|
|
self.ffn = PreNorm(
|
|
norm_layer(dim),
|
|
Mlp(in_features=dim,
|
|
hidden_features=int(dim * mlp_ratio),
|
|
act_layer=act_layer),
|
|
)
|
|
|
|
def forward(self, x, size):
|
|
if self.conv1:
|
|
x, size = self.conv1(x, size)
|
|
x, size = self.window_attn(x, size)
|
|
|
|
if self.conv2:
|
|
x, size = self.conv2(x, size)
|
|
x, size = self.ffn(x, size)
|
|
return x, size
|
|
|
|
|
|
class DaViT(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
in_chans=3,
|
|
num_classes=1000,
|
|
depths=(1, 1, 3, 1),
|
|
patch_size=(7, 2, 2, 2),
|
|
patch_stride=(4, 2, 2, 2),
|
|
patch_padding=(3, 0, 0, 0),
|
|
patch_prenorm=(False, False, False, False),
|
|
embed_dims=(64, 128, 192, 256),
|
|
num_heads=(3, 6, 12, 24),
|
|
num_groups=(3, 6, 12, 24),
|
|
window_size=7,
|
|
mlp_ratio=4.,
|
|
qkv_bias=True,
|
|
drop_path_rate=0.1,
|
|
norm_layer=nn.LayerNorm,
|
|
enable_checkpoint=False,
|
|
conv_at_attn=True,
|
|
conv_at_ffn=True,
|
|
):
|
|
super().__init__()
|
|
|
|
self.num_classes = num_classes
|
|
self.embed_dims = embed_dims
|
|
self.num_heads = num_heads
|
|
self.num_groups = num_groups
|
|
self.num_stages = len(self.embed_dims)
|
|
self.enable_checkpoint = enable_checkpoint
|
|
assert self.num_stages == len(self.num_heads) == len(self.num_groups)
|
|
|
|
num_stages = len(embed_dims)
|
|
dpr = [
|
|
x.item() for x in torch.linspace(0, drop_path_rate,
|
|
sum(depths) * 2)
|
|
]
|
|
|
|
depth_offset = 0
|
|
convs = []
|
|
blocks = []
|
|
for i in range(num_stages):
|
|
conv_embed = ConvEmbed(
|
|
patch_size=patch_size[i],
|
|
stride=patch_stride[i],
|
|
padding=patch_padding[i],
|
|
in_chans=in_chans if i == 0 else self.embed_dims[i - 1],
|
|
embed_dim=self.embed_dims[i],
|
|
norm_layer=norm_layer,
|
|
pre_norm=patch_prenorm[i])
|
|
convs.append(conv_embed)
|
|
|
|
block = MySequential(*[
|
|
MySequential(
|
|
OrderedDict([('spatial_block',
|
|
SpatialBlock(
|
|
embed_dims[i],
|
|
num_heads[i],
|
|
window_size,
|
|
drop_path_rate=dpr[depth_offset + j * 2],
|
|
qkv_bias=qkv_bias,
|
|
mlp_ratio=mlp_ratio,
|
|
conv_at_attn=conv_at_attn,
|
|
conv_at_ffn=conv_at_ffn,
|
|
)),
|
|
('channel_block',
|
|
ChannelBlock(
|
|
embed_dims[i],
|
|
num_groups[i],
|
|
drop_path_rate=dpr[depth_offset + j * 2 +
|
|
1],
|
|
qkv_bias=qkv_bias,
|
|
mlp_ratio=mlp_ratio,
|
|
conv_at_attn=conv_at_attn,
|
|
conv_at_ffn=conv_at_ffn,
|
|
))])) for j in range(depths[i])
|
|
])
|
|
blocks.append(block)
|
|
depth_offset += depths[i] * 2
|
|
|
|
self.convs = nn.ModuleList(convs)
|
|
self.blocks = nn.ModuleList(blocks)
|
|
|
|
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
|
|
|
@property
|
|
def dim_out(self):
|
|
return self.embed_dims[-1]
|
|
|
|
def forward_features_unpool(self, x):
|
|
"""
|
|
forward until avg pooling
|
|
Args:
|
|
x (_type_): input image tensor
|
|
"""
|
|
input_size = (x.size(2), x.size(3))
|
|
for conv, block in zip(self.convs, self.blocks):
|
|
x, input_size = conv(x, input_size)
|
|
x, input_size = block(x, input_size)
|
|
return x
|
|
|
|
def forward_features(self, x):
|
|
x = self.forward_features_unpool(x)
|
|
|
|
# (batch_size, num_tokens, token_dim)
|
|
x = self.avgpool(x.transpose(1, 2))
|
|
# (batch_size, 1, num_tokens)
|
|
x = torch.flatten(x, 1)
|
|
x = self.norms(x)
|
|
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.head(x)
|
|
return x
|
|
|
|
@classmethod
|
|
def from_config(cls, config):
|
|
return cls(
|
|
depths=config.depths,
|
|
embed_dims=config.dim_embed,
|
|
num_heads=config.num_heads,
|
|
num_groups=config.num_groups,
|
|
patch_size=config.patch_size,
|
|
patch_stride=config.patch_stride,
|
|
patch_padding=config.patch_padding,
|
|
patch_prenorm=config.patch_prenorm,
|
|
drop_path_rate=config.drop_path_rate,
|
|
window_size=config.window_size,
|
|
)
|
|
|
|
|
|
# Language backbone and processor implementation
|
|
class Florence2LanguageModel(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.shared = BartScaledWordEmbedding(self.vocab_size, config.d_model)
|
|
self.encoder = BartEncoder(config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.encoder")
|
|
self.decoder = BartDecoder(config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.decoder")
|
|
|
|
if self.config.tie_word_embeddings:
|
|
self.encoder.embed_tokens.weight = self.shared.weight
|
|
self.decoder.embed_tokens.weight = self.shared.weight
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
encoder_input_ids: torch.Tensor,
|
|
encoder_positions: torch.Tensor,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Args:
|
|
input_ids: Indices of *decoder* input sequence tokens
|
|
in the vocabulary.
|
|
Padding will be ignored by default should you
|
|
provide it.
|
|
positions: Positions of *decoder* input sequence tokens.
|
|
encoder_input_ids: Indices of *encoder* input sequence tokens
|
|
in the vocabulary.
|
|
encoder_positions: Positions of *encoder* input sequence tokens.
|
|
Returns:
|
|
Model output torch.Tensor
|
|
"""
|
|
|
|
encoder_hidden_states = None
|
|
|
|
if ((inputs_embeds is not None and inputs_embeds.numel() > 0)
|
|
or encoder_input_ids.numel() > 0):
|
|
# Run encoder attention if a non-zero number of encoder tokens
|
|
# are provided as input
|
|
encoder_hidden_states = self.encoder(input_ids=encoder_input_ids,
|
|
positions=encoder_positions,
|
|
inputs_embeds=inputs_embeds)
|
|
|
|
# decoder outputs consists of
|
|
# (dec_features, past_key_value, dec_hidden, dec_attn)
|
|
decoder_outputs = self.decoder(
|
|
decoder_input_ids=input_ids,
|
|
decoder_positions=positions,
|
|
encoder_hidden_states=encoder_hidden_states)
|
|
|
|
return decoder_outputs
|
|
|
|
|
|
class Florence2LanguageForConditionalGeneration(nn.Module, SupportsV0Only):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
|
|
self.config = config
|
|
self.model = Florence2LanguageModel(vllm_config=vllm_config,
|
|
prefix=f"{prefix}.model")
|
|
embed_scale = math.sqrt(
|
|
config.d_model) if config.scale_embedding else 1.0
|
|
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = BartParallelLMHead(self.vocab_size,
|
|
config.d_model,
|
|
embed_scale=embed_scale)
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head.tie_weights(self.model.shared)
|
|
|
|
self.logits_processor = LogitsProcessor(self.vocab_size,
|
|
config.vocab_size)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
encoder_input_ids: torch.Tensor,
|
|
encoder_positions: torch.Tensor,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Args:
|
|
input_ids: torch.Tensor of *decoder* input token ids.
|
|
positions: torch.Tensor of *decoder* position indices.
|
|
encoder_input_ids: torch.Tensor of *encoder* input token ids.
|
|
encoder_positions: torch.Tensor of *encoder* position indices
|
|
Returns:
|
|
Output torch.Tensor
|
|
"""
|
|
|
|
return self.model(input_ids,
|
|
positions,
|
|
encoder_input_ids,
|
|
encoder_positions,
|
|
inputs_embeds=inputs_embeds)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.encoder.embed_tokens(input_ids)
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
if "final_logits_bias" in name:
|
|
continue
|
|
if self.config.tie_word_embeddings and ("embed_tokens" in name
|
|
or "lm_head" in name):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class Florence2ProcessingInfo(BaseProcessingInfo):
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {"image": 1}
|
|
|
|
def get_num_image_tokens(self) -> int:
|
|
processor_config = self.ctx.get_hf_image_processor_config()
|
|
return processor_config["image_seq_length"]
|
|
|
|
|
|
class Florence2DummyInputsBuilder(
|
|
BaseDummyInputsBuilder[Florence2ProcessingInfo]):
|
|
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
return ""
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
target_width = target_height = self.info.get_hf_config().projection_dim
|
|
|
|
return {
|
|
"image":
|
|
self._get_dummy_images(width=target_width,
|
|
height=target_height,
|
|
num_images=num_images)
|
|
}
|
|
|
|
|
|
class Florence2MultiModalProcessor(
|
|
EncDecMultiModalProcessor[Florence2ProcessingInfo]):
|
|
|
|
def _hf_processor_applies_updates(
|
|
self,
|
|
prompt_text: str,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Mapping[str, object],
|
|
) -> bool:
|
|
return False
|
|
|
|
def create_encoder_prompt(
|
|
self,
|
|
prompt: Union[str, list[int]],
|
|
mm_data: MultiModalDataDict,
|
|
) -> Union[str, list[int]]:
|
|
return prompt
|
|
|
|
def create_decoder_prompt(
|
|
self,
|
|
prompt: Union[str, list[int]],
|
|
mm_data: MultiModalDataDict,
|
|
) -> Union[str, list[int]]:
|
|
return [self.info.get_hf_config().eos_token_id]
|
|
|
|
def _apply_hf_processor_tokens_only(
|
|
self,
|
|
prompt_tokens: list[int],
|
|
) -> list[int]:
|
|
hf_processor = self.info.get_hf_processor()
|
|
tokenizer: BartTokenizer = hf_processor.tokenizer
|
|
prompt_text = tokenizer.decode(prompt_tokens)
|
|
# convert task tokens to prompt
|
|
prompt_text = hf_processor._construct_prompts([prompt_text])[0]
|
|
prompt_tokens = tokenizer.encode(prompt_text, add_special_tokens=False)
|
|
return prompt_tokens
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
if mm_data:
|
|
processed_outputs = super()._call_hf_processor(
|
|
prompt, mm_data, mm_kwargs, tok_kwargs)
|
|
else:
|
|
hf_processor = self.info.get_hf_processor()
|
|
tokenizer = hf_processor.tokenizer
|
|
prompt = hf_processor._construct_prompts([prompt])[0]
|
|
processed_outputs = tokenizer(prompt,
|
|
add_special_tokens=True,
|
|
return_tensors="pt")
|
|
return processed_outputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(pixel_values=MultiModalFieldConfig.batched("image"))
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_config = self.info.get_hf_config()
|
|
pad_token_id = hf_config.pad_token_id
|
|
num_image_tokens = self.info.get_num_image_tokens()
|
|
image_tokens = [pad_token_id] * num_image_tokens
|
|
|
|
return [
|
|
PromptInsertion(
|
|
modality="image",
|
|
target=PromptIndexTargets.start(),
|
|
insertion=image_tokens,
|
|
)
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Florence2MultiModalProcessor,
|
|
info=Florence2ProcessingInfo,
|
|
dummy_inputs=Florence2DummyInputsBuilder)
|
|
class Florence2ForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|
SupportsV0Only):
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
|
|
if modality.startswith("image"):
|
|
return None
|
|
|
|
raise ValueError("Only image modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
processor_config = vllm_config.model_config.hf_image_processor_config
|
|
|
|
self.config = config
|
|
self.vision_config = config.vision_config
|
|
self.processor_config = processor_config
|
|
assert config.vision_config.model_type == 'davit', (
|
|
'only DaViT is supported for now')
|
|
self.vision_tower = DaViT.from_config(config=config.vision_config)
|
|
self._build_image_projection_layers(config)
|
|
self.language_model = Florence2LanguageForConditionalGeneration(
|
|
vllm_config=vllm_config.with_hf_config(config.text_config),
|
|
prefix=f"{prefix}.language_model",
|
|
)
|
|
self.pad_token_id = config.pad_token_id
|
|
|
|
def _build_image_projection_layers(self, config: PretrainedConfig):
|
|
image_dim_out = config.vision_config.dim_embed[-1]
|
|
dim_projection = config.vision_config.projection_dim
|
|
self.image_projection = nn.Parameter(
|
|
torch.empty(image_dim_out, dim_projection))
|
|
self.image_proj_norm = nn.LayerNorm(dim_projection)
|
|
image_pos_embed_config = config.vision_config.image_pos_embed
|
|
if image_pos_embed_config['type'] == 'learned_abs_2d':
|
|
self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
|
|
embedding_dim=image_dim_out,
|
|
num_pos=image_pos_embed_config['max_pos_embeddings'])
|
|
else:
|
|
raise NotImplementedError("Florence2 only supports learned_abs_2d "
|
|
"as image position embedding.")
|
|
|
|
self.image_feature_source = config.vision_config.image_feature_source
|
|
|
|
# temporal embedding
|
|
visual_temporal_embedding_config = (
|
|
self.vision_config.visual_temporal_embedding)
|
|
if visual_temporal_embedding_config['type'] == 'COSINE':
|
|
self.visual_temporal_embed = PositionalEmbeddingCosine1D(
|
|
embed_dim=image_dim_out,
|
|
max_seq_len=visual_temporal_embedding_config[
|
|
'max_temporal_embeddings'])
|
|
else:
|
|
raise NotImplementedError(
|
|
'Florence2 only supports COSINE as temporal embedding.')
|
|
|
|
def _parse_and_validate_image_input(self, **kwargs: object):
|
|
pixel_values: Optional[Union[list[list[torch.Tensor]],
|
|
list[torch.Tensor],
|
|
torch.Tensor]] = kwargs.pop(
|
|
"pixel_values", None)
|
|
image_embeds: Optional[Union[list[list[torch.Tensor]],
|
|
list[torch.Tensor],
|
|
torch.Tensor]] = kwargs.pop(
|
|
"image_embeds", None)
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
if pixel_values is not None and image_embeds is not None:
|
|
raise ValueError(
|
|
"Both pixel values and image embeds are provided.")
|
|
|
|
if pixel_values is not None:
|
|
size = self.processor_config["size"]
|
|
expected_h, expected_w = size["height"], size["width"]
|
|
|
|
return Florence2ImagePixelInputs(
|
|
type="pixel_values",
|
|
data=flatten_bn(pixel_values, concat=True),
|
|
resolve_bindings={
|
|
"h": expected_h,
|
|
"w": expected_w
|
|
},
|
|
)
|
|
|
|
if image_embeds is not None:
|
|
raise NotImplementedError
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _encode_image(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
|
dtype = next(self.vision_tower.parameters()).dtype
|
|
pixel_values = pixel_values.to(dtype)
|
|
|
|
batch_size, T = pixel_values.size(0), 1
|
|
x = self.vision_tower.forward_features_unpool(pixel_values)
|
|
if self.image_pos_embed is not None:
|
|
x = x.view(batch_size * T, -1, x.shape[-1])
|
|
num_tokens = x.shape[-2]
|
|
h, w = int(num_tokens**0.5), int(num_tokens**0.5)
|
|
assert h * w == num_tokens, (
|
|
'only support square feature maps for now')
|
|
x = x.view(batch_size * T, h, w, x.shape[-1])
|
|
pos_embed = self.image_pos_embed(x)
|
|
x = x + pos_embed
|
|
x = x.view(batch_size, T * h * w, x.shape[-1])
|
|
|
|
if self.visual_temporal_embed is not None:
|
|
visual_temporal_embed = self.visual_temporal_embed(
|
|
x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
|
|
x = x.view(batch_size, T, -1,
|
|
x.shape[-1]) + visual_temporal_embed.view(
|
|
1, T, 1, x.shape[-1])
|
|
|
|
x_feat_dict = {}
|
|
|
|
spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
|
|
x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x
|
|
|
|
temporal_avg_pool_x = x.view(batch_size, T, -1,
|
|
x.shape[-1]).mean(dim=1)
|
|
x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x
|
|
|
|
x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
|
|
x_feat_dict['last_frame'] = x
|
|
|
|
new_x = []
|
|
for _image_feature_source in self.image_feature_source:
|
|
if _image_feature_source not in x_feat_dict:
|
|
raise ValueError('invalid image feature source: {}'.format(
|
|
_image_feature_source))
|
|
new_x.append(x_feat_dict[_image_feature_source])
|
|
|
|
x = torch.cat(new_x, dim=1)
|
|
|
|
x = x @ self.image_projection
|
|
x = self.image_proj_norm(x)
|
|
|
|
return x
|
|
|
|
def _process_image_input(
|
|
self, image_input: Florence2ImagePixelInputs) -> torch.Tensor:
|
|
assert image_input["type"] == "pixel_values"
|
|
pixel_values = image_input["data"]
|
|
return self._encode_image(pixel_values)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def get_multimodal_embeddings(self,
|
|
**kwargs: object) -> MultiModalEmbeddings:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return []
|
|
vision_embeddings = self._process_image_input(image_input)
|
|
return vision_embeddings
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
|
if multimodal_embeddings is not None \
|
|
and len(multimodal_embeddings) != 0:
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids, inputs_embeds, multimodal_embeddings,
|
|
self.pad_token_id)
|
|
return inputs_embeds
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
*,
|
|
encoder_input_ids: torch.Tensor,
|
|
encoder_positions: torch.Tensor,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Args:
|
|
input_ids: torch.Tensor of *decoder* input token ids.
|
|
positions: torch.Tensor of *decoder* position indices.
|
|
encoder_input_ids: torch.Tensor of *encoder* input token ids.
|
|
encoder_positions: torch.Tensor of *encoder* position indices
|
|
Returns:
|
|
Output torch.Tensor
|
|
"""
|
|
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
|
|
if encoder_input_ids.numel() > 0 or vision_embeddings is not None:
|
|
inputs_embeds = self.get_input_embeddings(encoder_input_ids,
|
|
vision_embeddings)
|
|
else:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model(input_ids,
|
|
positions,
|
|
encoder_input_ids,
|
|
encoder_positions,
|
|
inputs_embeds=inputs_embeds)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
return self.language_model.compute_logits(hidden_states,
|
|
sampling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|