mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Signed-off-by: Tahsin Tunan <tahsintunan@gmail.com> Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Co-authored-by: Nick Hill <nhill@redhat.com> Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
37 lines
1.2 KiB
Python
37 lines
1.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm import LLM
|
|
|
|
from ...utils import create_new_process_for_each_test
|
|
|
|
|
|
@pytest.mark.parametrize("tp_size", [1, 2])
|
|
@pytest.mark.parametrize("backend", ["mp", "ray"])
|
|
@create_new_process_for_each_test()
|
|
def test_collective_rpc(tp_size, backend, monkeypatch):
|
|
if torch.cuda.device_count() < tp_size:
|
|
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
|
|
if tp_size == 1 and backend == "ray":
|
|
pytest.skip("Skip duplicate test case")
|
|
if tp_size == 1:
|
|
backend = None
|
|
|
|
# intentionally define the method and class in the test function,
|
|
# to test if they can be serialized and sent to the workers
|
|
def echo_rank(self):
|
|
return self.rank
|
|
|
|
monkeypatch.setenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "1")
|
|
llm = LLM(
|
|
model="hmellor/tiny-random-LlamaForCausalLM",
|
|
enforce_eager=True,
|
|
load_format="dummy",
|
|
tensor_parallel_size=tp_size,
|
|
distributed_executor_backend=backend,
|
|
)
|
|
assert llm.collective_rpc(echo_rank) == list(range(tp_size))
|