Files
vllm/vllm/config/__init__.py
2025-09-06 16:15:18 -07:00

4131 lines
174 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# ruff: noqa: F401
import ast
import copy
import enum
import hashlib
import inspect
import json
import textwrap
import uuid
import warnings
from collections.abc import Mapping
from contextlib import contextmanager
from dataclasses import MISSING, Field, field, fields, is_dataclass, replace
from functools import cached_property, lru_cache
from importlib.util import find_spec
from typing import (TYPE_CHECKING, Any, Callable, ClassVar, Literal, Optional,
Protocol, TypeVar, Union, cast, get_args)
import regex as re
import torch
from pydantic import (ConfigDict, SkipValidation, field_validator,
model_validator)
from pydantic.dataclasses import dataclass
from safetensors.torch import _TYPES as _SAFETENSORS_TO_TORCH_DTYPE
from typing_extensions import Self, assert_never, runtime_checkable
import vllm.envs as envs
from vllm import version
from vllm.config.cache import (BlockSize, CacheConfig, CacheDType, MambaDType,
PrefixCachingHashAlgo)
from vllm.config.compilation import (CompilationConfig, CompilationLevel,
CUDAGraphMode, PassConfig)
from vllm.config.parallel import (DistributedExecutorBackend, EPLBConfig,
ParallelConfig)
from vllm.config.scheduler import SchedulerConfig, SchedulerPolicy
from vllm.config.utils import ConfigType, config
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.platforms import current_platform
from vllm.transformers_utils.config import (
ConfigFormat, get_config, get_hf_image_processor_config,
get_hf_text_config, get_pooling_config,
get_sentence_transformer_tokenizer_config, is_encoder_decoder,
is_interleaved, maybe_override_with_speculators_target_model,
try_get_generation_config, try_get_safetensors_metadata,
try_get_tokenizer_config, uses_mrope)
from vllm.transformers_utils.s3_utils import S3Model
from vllm.transformers_utils.utils import is_s3, maybe_model_redirect
from vllm.utils import (DEFAULT_MAX_NUM_BATCHED_TOKENS,
STR_DUAL_CHUNK_FLASH_ATTN_VAL, LayerBlockType,
LazyLoader, common_broadcastable_dtype, random_uuid)
if TYPE_CHECKING:
from _typeshed import DataclassInstance
from transformers.configuration_utils import PretrainedConfig
import vllm.model_executor.layers.quantization as me_quant
import vllm.model_executor.models as me_models
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.model_loader import LoadFormats
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
from vllm.v1.sample.logits_processor import LogitsProcessor
HfOverrides = Union[dict, Callable[[type], type]]
else:
DataclassInstance = Any
PretrainedConfig = Any
QuantizationConfig = Any
QuantizationMethods = Any
BaseModelLoader = Any
LoadFormats = Any
TensorizerConfig = Any
LogitsProcessor = Any
HfOverrides = Union[dict[str, Any], Callable[[type], type]]
me_quant = LazyLoader("model_executor", globals(),
"vllm.model_executor.layers.quantization")
me_models = LazyLoader("model_executor", globals(),
"vllm.model_executor.models")
logger = init_logger(__name__)
DataclassInstanceT = TypeVar("DataclassInstanceT", bound=DataclassInstance)
TaskOption = Literal["auto", "generate", "embedding", "embed", "classify",
"score", "reward", "transcription", "draft"]
_ResolvedTask = Literal["generate", "transcription", "encode", "embed",
"classify", "reward", "draft"]
RunnerOption = Literal["auto", "generate", "pooling", "draft"]
RunnerType = Literal["generate", "pooling", "draft"]
ConvertOption = Literal["auto", "none", "embed", "classify", "reward"]
ConvertType = Literal["none", "embed", "classify", "reward"]
_RUNNER_TASKS: dict[RunnerType, list[TaskOption]] = {
"generate": ["generate", "transcription"],
"pooling": ["embedding", "embed", "classify", "score", "reward"],
"draft": ["draft"],
}
_RUNNER_CONVERTS: dict[RunnerType, list[ConvertType]] = {
"generate": [],
"pooling": ["embed", "classify", "reward"],
"draft": [],
}
# Some model suffixes are based on auto classes from Transformers:
# https://huggingface.co/docs/transformers/en/model_doc/auto
# NOTE: Items higher on this list priority over lower ones
_SUFFIX_TO_DEFAULTS: list[tuple[str, tuple[RunnerType, ConvertType]]] = [
("ForCausalLM", ("generate", "none")),
("ForConditionalGeneration", ("generate", "none")),
("ChatModel", ("generate", "none")),
("LMHeadModel", ("generate", "none")),
("ForTextEncoding", ("pooling", "embed")),
("EmbeddingModel", ("pooling", "embed")),
("ForSequenceClassification", ("pooling", "classify")),
("ForAudioClassification", ("pooling", "classify")),
("ForImageClassification", ("pooling", "classify")),
("ForVideoClassification", ("pooling", "classify")),
("ClassificationModel", ("pooling", "classify")),
("ForRewardModeling", ("pooling", "reward")),
("RewardModel", ("pooling", "reward")),
# Let other `*Model`s take priority
("Model", ("pooling", "embed")),
]
def iter_architecture_defaults():
yield from _SUFFIX_TO_DEFAULTS
def try_match_architecture_defaults(
architecture: str,
*,
runner_type: Optional[RunnerType] = None,
convert_type: Optional[ConvertType] = None,
) -> Optional[tuple[str, tuple[RunnerType, ConvertType]]]:
for suffix, (default_runner_type,
default_convert_type) in iter_architecture_defaults():
if ((runner_type is None or runner_type == default_runner_type) and
(convert_type is None or convert_type == default_convert_type)
and architecture.endswith(suffix)):
return suffix, (default_runner_type, default_convert_type)
return None
@runtime_checkable
class SupportsHash(Protocol):
def compute_hash(self) -> str:
...
class SupportsMetricsInfo(Protocol):
def metrics_info(self) -> dict[str, str]:
...
class ModelImpl(str, enum.Enum):
AUTO = "auto"
VLLM = "vllm"
TRANSFORMERS = "transformers"
TERRATORCH = "terratorch"
def get_attr_docs(cls: type[Any]) -> dict[str, str]:
"""
Get any docstrings placed after attribute assignments in a class body.
https://davidism.com/mit-license/
"""
def pairwise(iterable):
"""
Manually implement https://docs.python.org/3/library/itertools.html#itertools.pairwise
Can be removed when Python 3.9 support is dropped.
"""
iterator = iter(iterable)
a = next(iterator, None)
for b in iterator:
yield a, b
a = b
try:
cls_node = ast.parse(textwrap.dedent(inspect.getsource(cls))).body[0]
except (OSError, KeyError, TypeError):
# HACK: Python 3.13+ workaround - set missing __firstlineno__
# Workaround can be removed after we upgrade to pydantic==2.12.0
with open(inspect.getfile(cls)) as f:
for i, line in enumerate(f):
if f"class {cls.__name__}" in line and ":" in line:
cls.__firstlineno__ = i + 1
break
cls_node = ast.parse(textwrap.dedent(inspect.getsource(cls))).body[0]
if not isinstance(cls_node, ast.ClassDef):
raise TypeError("Given object was not a class.")
out = {}
# Consider each pair of nodes.
for a, b in pairwise(cls_node.body):
# Must be an assignment then a constant string.
if (not isinstance(a, (ast.Assign, ast.AnnAssign))
or not isinstance(b, ast.Expr)
or not isinstance(b.value, ast.Constant)
or not isinstance(b.value.value, str)):
continue
doc = inspect.cleandoc(b.value.value)
# An assignment can have multiple targets (a = b = v), but an
# annotated assignment only has one target.
targets = a.targets if isinstance(a, ast.Assign) else [a.target]
for target in targets:
# Must be assigning to a plain name.
if not isinstance(target, ast.Name):
continue
out[target.id] = doc
return out
def get_field(cls: ConfigType, name: str) -> Field:
"""Get the default factory field of a dataclass by name. Used for getting
default factory fields in `EngineArgs`."""
if not is_dataclass(cls):
raise TypeError("The given class is not a dataclass.")
cls_fields = {f.name: f for f in fields(cls)}
if name not in cls_fields:
raise ValueError(f"Field '{name}' not found in {cls.__name__}.")
named_field: Field = cls_fields[name]
if (default_factory := named_field.default_factory) is not MISSING:
return field(default_factory=default_factory)
if (default := named_field.default) is not MISSING:
return field(default=default)
raise ValueError(
f"{cls.__name__}.{name} must have a default value or default factory.")
def is_init_field(cls: ConfigType, name: str) -> bool:
return next(f for f in fields(cls) if f.name == name).init
TokenizerMode = Literal["auto", "slow", "mistral", "custom"]
ModelDType = Literal["auto", "half", "float16", "bfloat16", "float", "float32"]
MMEncoderTPMode = Literal["weights", "data"]
class LogprobsMode(enum.Enum):
RAW_LOGITS = "raw_logits"
RAW_LOGPROBS = "raw_logprobs"
PROCESSED_LOGITS = "processed_logits"
PROCESSED_LOGPROBS = "processed_logprobs"
@config
@dataclass(config=ConfigDict(arbitrary_types_allowed=True))
class ModelConfig:
"""Configuration for the model."""
model: str = "Qwen/Qwen3-0.6B"
"""Name or path of the Hugging Face model to use. It is also used as the
content for `model_name` tag in metrics output when `served_model_name` is
not specified."""
runner: RunnerOption = "auto"
"""The type of model runner to use. Each vLLM instance only supports one
model runner, even if the same model can be used for multiple types."""
convert: ConvertOption = "auto"
"""Convert the model using adapters defined in
[vllm.model_executor.models.adapters][]. The most common use case is to
adapt a text generation model to be used for pooling tasks."""
task: Optional[TaskOption] = None
"""[DEPRECATED] The task to use the model for. If the model supports more
than one model runner, this is used to select which model runner to run.
Note that the model may support other tasks using the same model runner.
"""
tokenizer: SkipValidation[str] = None # type: ignore
"""Name or path of the Hugging Face tokenizer to use. If unspecified, model
name or path will be used."""
tokenizer_mode: TokenizerMode = "auto"
"""Tokenizer mode:\n
- "auto" will use the fast tokenizer if available.\n
- "slow" will always use the slow tokenizer.\n
- "mistral" will always use the tokenizer from `mistral_common`.\n
- "custom" will use --tokenizer to select the preregistered tokenizer."""
trust_remote_code: bool = False
"""Trust remote code (e.g., from HuggingFace) when downloading the model
and tokenizer."""
dtype: Union[ModelDType, torch.dtype] = "auto"
"""Data type for model weights and activations:\n
- "auto" will use FP16 precision for FP32 and FP16 models, and BF16
precision for BF16 models.\n
- "half" for FP16. Recommended for AWQ quantization.\n
- "float16" is the same as "half".\n
- "bfloat16" for a balance between precision and range.\n
- "float" is shorthand for FP32 precision.\n
- "float32" for FP32 precision."""
seed: Optional[int] = None
"""Random seed for reproducibility. Initialized to None in V0, but
initialized to 0 in V1."""
hf_config_path: Optional[str] = None
"""Name or path of the Hugging Face config to use. If unspecified, model
name or path will be used."""
allowed_local_media_path: str = ""
"""Allowing API requests to read local images or videos from directories
specified by the server file system. This is a security risk. Should only
be enabled in trusted environments."""
revision: Optional[str] = None
"""The specific model version to use. It can be a branch name, a tag name,
or a commit id. If unspecified, will use the default version."""
code_revision: Optional[str] = None
"""The specific revision to use for the model code on the Hugging Face Hub.
It can be a branch name, a tag name, or a commit id. If unspecified, will
use the default version."""
rope_scaling: dict[str, Any] = field(default_factory=dict)
"""RoPE scaling configuration. For example,
`{"rope_type":"dynamic","factor":2.0}`."""
rope_theta: Optional[float] = None
"""RoPE theta. Use with `rope_scaling`. In some cases, changing the RoPE
theta improves the performance of the scaled model."""
tokenizer_revision: Optional[str] = None
"""The specific revision to use for the tokenizer on the Hugging Face Hub.
It can be a branch name, a tag name, or a commit id. If unspecified, will
use the default version."""
max_model_len: SkipValidation[int] = None # type: ignore
"""Model context length (prompt and output). If unspecified, will be
automatically derived from the model config.
When passing via `--max-model-len`, supports k/m/g/K/M/G in human-readable
format. Examples:\n
- 1k -> 1000\n
- 1K -> 1024\n
- 25.6k -> 25,600"""
spec_target_max_model_len: Optional[int] = None
"""Specify the maximum length for spec decoding draft models."""
quantization: SkipValidation[Optional[QuantizationMethods]] = None
"""Method used to quantize the weights. If `None`, we first check the
`quantization_config` attribute in the model config file. If that is
`None`, we assume the model weights are not quantized and use `dtype` to
determine the data type of the weights."""
enforce_eager: bool = False
"""Whether to always use eager-mode PyTorch. If True, we will disable CUDA
graph and always execute the model in eager mode. If False, we will use
CUDA graph and eager execution in hybrid for maximal performance and
flexibility."""
max_seq_len_to_capture: int = 8192
"""Maximum sequence len covered by CUDA graphs. When a sequence has context
length larger than this, we fall back to eager mode. Additionally for
encoder-decoder models, if the sequence length of the encoder input is
larger than this, we fall back to the eager mode."""
max_logprobs: int = 20
"""Maximum number of log probabilities to return when `logprobs` is
specified in `SamplingParams`. The default value comes the default for the
OpenAI Chat Completions API. -1 means no cap, i.e. all (output_length *
vocab_size) logprobs are allowed to be returned and it may cause OOM."""
logprobs_mode: LogprobsMode = LogprobsMode.RAW_LOGPROBS
"""Indicates the content returned in the logprobs and prompt_logprobs.
Supported mode:
1) raw_logprobs, 2) processed_logprobs, 3) raw_logits, 4) processed_logits.
Raw means the values before applying any logit processors, like bad words.
Processed means the values after applying all processors, including
temperature and top_k/top_p.
"""
disable_sliding_window: bool = False
"""Whether to disable sliding window. If True, we will disable the sliding
window functionality of the model, capping to sliding window size. If the
model does not support sliding window, this argument is ignored."""
disable_cascade_attn: bool = False
"""Disable cascade attention for V1. While cascade attention does not
change the mathematical correctness, disabling it could be useful for
preventing potential numerical issues. Note that even if this is set to
False, cascade attention will be only used when the heuristic tells that
it's beneficial."""
skip_tokenizer_init: bool = False
"""Skip initialization of tokenizer and detokenizer. Expects valid
`prompt_token_ids` and `None` for prompt from the input. The generated
output will contain token ids."""
enable_prompt_embeds: bool = False
"""If `True`, enables passing text embeddings as inputs via the
`prompt_embeds` key. Note that enabling this will double the time required
for graph compilation."""
served_model_name: Optional[Union[str, list[str]]] = None
"""The model name(s) used in the API. If multiple names are provided, the
server will respond to any of the provided names. The model name in the
model field of a response will be the first name in this list. If not
specified, the model name will be the same as the `--model` argument. Noted
that this name(s) will also be used in `model_name` tag content of
prometheus metrics, if multiple names provided, metrics tag will take the
first one."""
limit_mm_per_prompt: dict[str, int] = field(default_factory=dict)
"""Maximum number of data items per modality per prompt. Only applicable
for multimodal models."""
interleave_mm_strings: bool = False
"""Enable fully interleaved support for multimodal prompts, while using
--chat-template-content-format=string. Defaults to False."""
skip_mm_profiling: bool = False
"""When enabled, skips multimodal memory profiling and only profiles with
language backbone model during engine initialization.
"""
media_io_kwargs: dict[str, dict[str, Any]] = field(default_factory=dict)
"""Additional args passed to process media inputs, keyed by modalities.
For example, to set num_frames for video, set
`--media-io-kwargs '{"video": {"num_frames": 40} }'` """
use_async_output_proc: bool = True
"""Whether to use async output processor."""
config_format: Union[str, ConfigFormat] = ConfigFormat.AUTO.value
"""The format of the model config to load:\n
- "auto" will try to load the config in hf format if available else it
will try to load in mistral format.\n
- "hf" will load the config in hf format.\n
- "mistral" will load the config in mistral format."""
hf_token: Optional[Union[bool, str]] = None
"""The token to use as HTTP bearer authorization for remote files . If
`True`, will use the token generated when running `huggingface-cli login`
(stored in `~/.huggingface`)."""
hf_overrides: HfOverrides = field(default_factory=dict)
"""If a dictionary, contains arguments to be forwarded to the Hugging Face
config. If a callable, it is called to update the HuggingFace config."""
mm_processor_kwargs: Optional[dict[str, Any]] = None
"""Arguments to be forwarded to the model's processor for multi-modal data,
e.g., image processor. Overrides for the multi-modal processor obtained
from `AutoProcessor.from_pretrained`. The available overrides depend on the
model that is being run. For example, for Phi-3-Vision: `{"num_crops": 4}`.
"""
mm_processor_cache_gb: float = 4
"""The size (in GiB) of the multi-modal processor cache, which is used to
avoid re-processing past multi-modal inputs.
This cache is duplicated for each API process and engine core process,
resulting in a total memory usage of
`mm_processor_cache_gb * (api_server_count + data_parallel_size)`.
Set to `0` to disable this cache completely (not recommended)."""
mm_encoder_tp_mode: MMEncoderTPMode = "weights"
"""Indicates how to optimize multi-modal encoder inference using
tensor parallelism (TP).
- `"weights"`: Within the same vLLM engine, split the weights of
each layer across TP ranks. (default TP behavior)
- `"data"`: Within the same vLLM engine, split the batched input data
across TP ranks to process the data in parallel, while hosting
the full weights on each TP rank.
This batch-level DP is not to be confused with API request-level
DP (which is controlled by `--data-parallel-size`).
This is only supported on a per-model basis and falls back to
`"weights"` if the encoder does not support DP."""
pooler_config: Optional["PoolerConfig"] = field(init=False)
"""Pooler config which controls the behaviour of output pooling in pooling
models."""
override_pooler_config: Optional[Union[dict, "PoolerConfig"]] = None
"""Initialize non-default pooling config or override default pooling config
for the pooling model. e.g. `{"pooling_type": "mean", "normalize": false}`.
"""
logits_processor_pattern: Optional[str] = None
"""Optional regex pattern specifying valid logits processor qualified names
that can be passed with the `logits_processors` extra completion argument.
Defaults to `None`, which allows no processors."""
generation_config: str = "auto"
"""The folder path to the generation config. Defaults to `"auto"`, the
generation config will be loaded from model path. If set to `"vllm"`, no
generation config is loaded, vLLM defaults will be used. If set to a folder
path, the generation config will be loaded from the specified folder path.
If `max_new_tokens` is specified in generation config, then it sets a
server-wide limit on the number of output tokens for all requests."""
override_generation_config: dict[str, Any] = field(default_factory=dict)
"""Overrides or sets generation config. e.g. `{"temperature": 0.5}`. If
used with `--generation-config auto`, the override parameters will be
merged with the default config from the model. If used with
`--generation-config vllm`, only the override parameters are used."""
enable_sleep_mode: bool = False
"""Enable sleep mode for the engine (only cuda platform is supported)."""
model_impl: Union[str, ModelImpl] = ModelImpl.AUTO.value
"""Which implementation of the model to use:\n
- "auto" will try to use the vLLM implementation, if it exists, and fall
back to the Transformers implementation if no vLLM implementation is
available.\n
- "vllm" will use the vLLM model implementation.\n
- "transformers" will use the Transformers model implementation.\n
- "terratorch" will use the TerraTorch model implementation.
"""
override_attention_dtype: Optional[str] = None
"""Override dtype for attention"""
logits_processors: Optional[list[Union[str, type[LogitsProcessor]]]] = None
"""One or more logits processors' fully-qualified class names or class
definitions"""
io_processor_plugin: Optional[str] = None
"""IOProcessor plugin name to load at model startup"""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
factors.append(self.model)
factors.append(self.dtype)
factors.append(self.quantization)
factors.append(self.revision)
factors.append(self.code_revision)
factors.append(self.max_model_len)
factors.append(self.max_logprobs)
factors.append(self.disable_sliding_window)
factors.append(self.trust_remote_code)
factors.append(self.generation_config)
factors.append(self.model_impl)
factors.append(self.override_generation_config)
factors.append(self.rope_scaling)
factors.append(self.rope_theta)
# hf_config can control how the model looks!
factors.append(self.hf_config.to_json_string())
str_factors = str(factors)
assert_hashable(str_factors)
return hashlib.sha256(str(factors).encode()).hexdigest()
def __post_init__(self) -> None:
# Set the default seed to 0 in V1.
# NOTE(woosuk): In V0, we set the default seed to None because the
# driver worker shares the same process as the user process, and thus
# setting a seed affects the user process as well.
# In V1, we use separate processes for workers (unless
# VLLM_ENABLE_V1_MULTIPROCESSING=0), so setting a seed here
# doesn't affect the user process. However, without a consistent seed,
# different tensor parallel workers would sample different tokens,
# leading to inconsistent results.
if envs.VLLM_USE_V1 and self.seed is None:
self.seed = 0
if not envs.VLLM_ENABLE_V1_MULTIPROCESSING:
logger.warning(
"The global random seed is set to %d. Since "
"VLLM_ENABLE_V1_MULTIPROCESSING is set to False, this may "
"affect the random state of the Python process that "
"launched vLLM.", self.seed)
if self.runner != "draft":
# If we're not running the draft model, check for speculators config
# If speculators config, set model / tokenizer to be target model
self.model, self.tokenizer = maybe_override_with_speculators_target_model( # noqa: E501
model=self.model,
tokenizer=self.tokenizer,
revision=self.revision,
trust_remote_code=self.trust_remote_code)
# Keep set served_model_name before maybe_model_redirect(self.model)
self.served_model_name = get_served_model_name(self.model,
self.served_model_name)
self.model = maybe_model_redirect(self.model)
# The tokenizer is consistent with the model by default.
if self.tokenizer is None:
self.tokenizer = self.model
if self.tokenizer_revision is None:
self.tokenizer_revision = self.revision
self.tokenizer = maybe_model_redirect(self.tokenizer)
if isinstance(self.hf_config_path, str):
self.hf_config_path = maybe_model_redirect(self.hf_config_path)
if callable(self.hf_overrides):
hf_overrides_kw = {}
hf_overrides_fn = self.hf_overrides
else:
hf_overrides_kw = self.hf_overrides
hf_overrides_fn = None
if self.rope_scaling:
hf_override: dict[str, Any] = {"rope_scaling": self.rope_scaling}
hf_overrides_kw.update(hf_override)
hf_overrides_str = json.dumps(hf_overrides_kw)
msg = (
"`--rope-scaling` will be removed in a future release. "
f"'Please instead use `--hf-overrides '{hf_overrides_str}'`")
warnings.warn(DeprecationWarning(msg), stacklevel=2)
if self.rope_theta is not None:
hf_override = {"rope_theta": self.rope_theta}
hf_overrides_kw.update(hf_override)
hf_overrides_str = json.dumps(hf_overrides_kw)
msg = (
"`--rope-theta` will be removed in a future release. "
f"'Please instead use `--hf-overrides '{hf_overrides_str}'`")
warnings.warn(DeprecationWarning(msg), stacklevel=2)
self.maybe_pull_model_tokenizer_for_s3(self.model, self.tokenizer)
if (backend := envs.VLLM_ATTENTION_BACKEND
) and backend == "FLASHINFER" and find_spec("flashinfer") is None:
raise ValueError(
"VLLM_ATTENTION_BACKEND is set to FLASHINFER, but flashinfer "
"module was not found. See "
"https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile " # noqa: E501
"for instructions on how to install it.")
from vllm.platforms import current_platform
if (self.override_attention_dtype is not None
and not current_platform.is_rocm()):
warnings.warn(
"override-attention-dtype is set but not using ROCm platform",
stacklevel=2)
if (self.enable_sleep_mode
and not current_platform.is_sleep_mode_available()):
raise ValueError(
"Sleep mode is not supported on current platform.")
if isinstance(self.config_format, str):
self.config_format = ConfigFormat(self.config_format)
hf_config = get_config(self.hf_config_path or self.model,
self.trust_remote_code,
self.revision,
self.code_revision,
self.config_format,
hf_overrides_kw=hf_overrides_kw,
hf_overrides_fn=hf_overrides_fn)
self.hf_config = hf_config
self.hf_text_config = get_hf_text_config(self.hf_config)
self.attention_chunk_size = getattr(self.hf_text_config,
"attention_chunk_size", None)
self.encoder_config = self._get_encoder_config()
self.hf_image_processor_config = get_hf_image_processor_config(
self.model, hf_token=self.hf_token, revision=self.revision)
architectures = self.architectures
registry = self.registry
is_generative_model = registry.is_text_generation_model(
architectures, self)
is_pooling_model = registry.is_pooling_model(architectures, self)
def _task_to_convert(task: TaskOption) -> ConvertType:
if task == "embedding" or task == "embed":
return "embed"
if task == "classify":
return "classify"
if task == "reward":
return "reward"
if task == "score":
new_task = self._get_default_pooling_task(architectures)
return "classify" if new_task == "classify" else "embed"
return "none"
if self.task is not None:
runner: RunnerOption = "auto"
convert: ConvertOption = "auto"
msg_prefix = ("The 'task' option has been deprecated and will be "
"removed in v0.13.0 or v1.0, whichever comes first.")
msg_hint = "Please remove this option."
is_generative_task = self.task in _RUNNER_TASKS["generate"]
is_pooling_task = self.task in _RUNNER_TASKS["pooling"]
if is_generative_model and is_pooling_model:
if is_generative_task:
runner = "generate"
convert = "auto"
msg_hint = ("Please replace this option with `--runner "
"generate` to continue using this model "
"as a generative model.")
elif is_pooling_task:
runner = "pooling"
convert = "auto"
msg_hint = ("Please replace this option with `--runner "
"pooling` to continue using this model "
"as a pooling model.")
else: # task == "auto"
pass
elif is_generative_model or is_pooling_model:
if is_generative_task:
runner = "generate"
convert = "auto"
msg_hint = "Please remove this option"
elif is_pooling_task:
runner = "pooling"
convert = _task_to_convert(self.task)
msg_hint = ("Please replace this option with `--convert "
f"{convert}` to continue using this model "
"as a pooling model.")
else: # task == "auto"
pass
else:
raise AssertionError("The model should be a generative or "
"pooling model when task is set to "
f"{self.task!r}.")
self.runner = runner
self.convert = convert
msg = f"{msg_prefix} {msg_hint}"
warnings.warn(msg, DeprecationWarning, stacklevel=2)
self.runner_type = self._get_runner_type(architectures, self.runner)
self.convert_type = self._get_convert_type(architectures,
self.runner_type,
self.convert)
if self.runner_type == "generate" and not is_generative_model:
generate_converts = _RUNNER_CONVERTS["generate"]
if self.convert_type not in generate_converts:
# Currently we don't have any converters for generative models
raise ValueError(
"This model does not support `--runner generate`.")
if self.runner_type == "pooling" and not is_pooling_model:
pooling_converts = _RUNNER_CONVERTS["pooling"]
if self.convert_type not in pooling_converts:
convert_option = "<" + "|".join(pooling_converts) + ">"
raise ValueError(
"This model does not support `--runner pooling`. "
f"You can pass `--convert {convert_option} to adapt "
"it into a pooling model.")
self.supported_tasks = self._get_supported_tasks(
architectures, self.runner_type, self.convert_type)
# Note: Initialize these attributes early because transformers fallback
# may fail to load dynamic modules in child processes
model_info, arch = registry.inspect_model_cls(architectures, self)
self._model_info = model_info
self._architecture = arch
logger.info("Resolved architecture: %s", arch)
self.pooler_config = self._init_pooler_config()
self.dtype = _get_and_verify_dtype(
self.model,
self.hf_config,
self.dtype,
is_pooling_model=self.runner_type == "pooling",
revision=self.revision,
)
# Interleaved attention is not supported by some backends in V0
if (not self.disable_sliding_window
and is_interleaved(self.hf_text_config)
and not envs.VLLM_USE_V1
and (backend := envs.VLLM_ATTENTION_BACKEND)
in ("XFORMERS", "FLASHINFER")):
logger.warning_once(
"%s has interleaved attention, which is currently not "
"supported by the %s backend. Disabling sliding window and "
"capping the max length to the sliding window size (%d).",
self.hf_text_config.model_type,
backend,
self.hf_text_config.sliding_window,
)
self.disable_sliding_window = True
self.original_max_model_len = self.max_model_len
self.max_model_len = self.get_and_verify_max_len(self.max_model_len)
self.multimodal_config = self._init_multimodal_config()
if self.disable_sliding_window:
# Set after get_and_verify_max_len to ensure that max_model_len
# can be correctly capped to sliding window size
self.hf_text_config.sliding_window = None
if not self.skip_tokenizer_init:
self._verify_tokenizer_mode()
# Avoid running try_verify_and_update_config multiple times
self.config_updated = False
self._verify_quantization()
self._verify_cuda_graph()
self._verify_bnb_config()
@field_validator("quantization", mode="before")
@classmethod
def validate_quantization_before(cls, value: Any) -> Any:
if isinstance(value, str):
return value.lower()
return value
@model_validator(mode="after")
def validate_model_config_after(self: "ModelConfig") -> "ModelConfig":
if not isinstance(self.tokenizer, str):
raise ValueError("tokenizer must be a string after __post_init__.")
if not isinstance(self.max_model_len, int):
raise ValueError(
"max_model_len must be an integer after __post_init__.")
return self
def _get_transformers_backend_cls(self) -> str:
"""Determine which Transformers backend class will be used if
`model_impl` is set to `transformers` or `auto`."""
if getattr(self, "runner_type", self.runner) == "pooling":
return "TransformersModel"
if self.hf_config != self.hf_text_config:
# If 'hf_text_config' is the same as 'hf_config'. If not, it is
# probably a composite config, i.e. multimodal
return "TransformersForMultimodalLM"
return "TransformersForCausalLM"
def using_transformers_backend(self) -> bool:
"""Check if the model is using the Transformers backend class."""
return self.architecture == self._get_transformers_backend_cls()
@property
def registry(self):
return me_models.ModelRegistry
@property
def architectures(self) -> list[str]:
return getattr(self.hf_config, "architectures", [])
@property
def architecture(self) -> str:
"""The architecture vllm actually used."""
return self._architecture
def maybe_pull_model_tokenizer_for_s3(self, model: str,
tokenizer: str) -> None:
"""Pull model/tokenizer from S3 to temporary directory when needed.
Args:
model: Model name or path
tokenizer: Tokenizer name or path
"""
if not (is_s3(model) or is_s3(tokenizer)):
return
if is_s3(model):
s3_model = S3Model()
s3_model.pull_files(model,
allow_pattern=["*.model", "*.py", "*.json"])
self.model_weights = model
self.model = s3_model.dir
# If tokenizer is same as model, download to same directory
if model == tokenizer:
s3_model.pull_files(model,
ignore_pattern=[
"*.pt", "*.safetensors", "*.bin",
"*.tensors"
])
self.tokenizer = s3_model.dir
return
# Only download tokenizer if needed and not already handled
if is_s3(tokenizer):
s3_tokenizer = S3Model()
s3_tokenizer.pull_files(
model,
ignore_pattern=["*.pt", "*.safetensors", "*.bin", "*.tensors"])
self.tokenizer = s3_tokenizer.dir
def _init_multimodal_config(self) -> Optional["MultiModalConfig"]:
if self._model_info.supports_multimodal:
if (self.mm_encoder_tp_mode == "data" and
not self._model_info.supports_multimodal_encoder_tp_data):
logger.warning_once(
"This model does not support `--mm-encoder-tp-mode data`. "
"Falling back to `--mm-encoder-tp-mode weights`.")
self.mm_encoder_tp_mode = "weights"
return MultiModalConfig(
limit_per_prompt=self.limit_mm_per_prompt,
media_io_kwargs=self.media_io_kwargs,
mm_processor_kwargs=self.mm_processor_kwargs,
mm_processor_cache_gb=self.mm_processor_cache_gb,
mm_encoder_tp_mode=self.mm_encoder_tp_mode,
interleave_mm_strings=self.interleave_mm_strings,
skip_mm_profiling=self.skip_mm_profiling,
)
return None
def _get_encoder_config(self):
return get_sentence_transformer_tokenizer_config(
self.model, self.revision)
def _init_pooler_config(self) -> Optional["PoolerConfig"]:
if self.runner_type == "pooling":
if isinstance(self.override_pooler_config, dict):
self.override_pooler_config = PoolerConfig(
**self.override_pooler_config)
pooler_config = self.override_pooler_config or PoolerConfig()
base_config = get_pooling_config(self.model, self.revision)
if base_config is not None:
# Only set values that are not overridden by the user
for k, v in base_config.items():
if getattr(pooler_config, k) is None:
setattr(pooler_config, k, v)
default_pooling_type = self._model_info.default_pooling_type
if pooler_config.pooling_type is None:
pooler_config.pooling_type = default_pooling_type
return pooler_config
return None
def _verify_tokenizer_mode(self) -> None:
tokenizer_mode = cast(TokenizerMode, self.tokenizer_mode.lower())
if tokenizer_mode not in get_args(TokenizerMode):
raise ValueError(
f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
f"one of {get_args(TokenizerMode)}.")
self.tokenizer_mode = tokenizer_mode
def _get_default_runner_type(
self,
architectures: list[str],
) -> RunnerType:
registry = self.registry
# Some Sentence Transformers models use *ForCausalLM archs
if get_pooling_config(self.model, self.revision):
return "pooling"
for arch in architectures:
if arch in registry.get_supported_archs():
if registry.is_pooling_model(architectures, self):
return "pooling"
if registry.is_text_generation_model(architectures, self):
return "generate"
match = try_match_architecture_defaults(arch)
if match:
_, (runner_type, _) = match
return runner_type
return "generate"
def _get_runner_type(
self,
architectures: list[str],
runner: RunnerOption,
) -> RunnerType:
if runner != "auto":
return runner
runner_type = self._get_default_runner_type(architectures)
# Don't log the most common case
if runner_type != "generate":
logger.info(
"Resolved `--runner auto` to `--runner %s`. "
"Pass the value explicitly to silence this message.",
runner_type)
return runner_type
def _get_default_convert_type(
self,
architectures: list[str],
runner_type: RunnerType,
) -> ConvertType:
registry = self.registry
for arch in architectures:
if arch in registry.get_supported_archs():
if (runner_type == "generate"
and registry.is_text_generation_model(
architectures, self)):
return "none"
if (runner_type == "pooling"
and registry.is_pooling_model(architectures, self)):
return "none"
match = try_match_architecture_defaults(arch,
runner_type=runner_type)
if match:
_, (_, convert_type) = match
return convert_type
# This is to handle Sentence Transformers models that use *ForCausalLM
# and also multi-modal pooling models which are not defined as
# Sentence Transformers models
if runner_type == "pooling":
return "embed"
return "none"
def _get_convert_type(
self,
architectures: list[str],
runner_type: RunnerType,
convert: ConvertOption,
) -> ConvertType:
if convert != "auto":
return convert
convert_type = self._get_default_convert_type(architectures,
runner_type)
# Don't log the most common case
if convert_type != "none":
logger.info(
"Resolved `--convert auto` to `--convert %s`. "
"Pass the value explicitly to silence this message.",
convert_type)
return convert_type
def _get_supported_generation_tasks(
self,
architectures: list[str],
convert_type: ConvertType,
) -> list[_ResolvedTask]:
registry = self.registry
if registry.is_transcription_only_model(architectures, self):
return ["transcription"]
# TODO: Use get_supported_generation_tasks once V0 is removed
supported_tasks = list[_ResolvedTask]()
if (registry.is_text_generation_model(architectures, self)
or convert_type in _RUNNER_CONVERTS["generate"]):
supported_tasks.append("generate")
if registry.is_transcription_model(architectures, self):
supported_tasks.append("transcription")
return supported_tasks
def _get_default_pooling_task(
self,
architectures: list[str],
) -> Literal["embed", "classify", "reward"]:
if self.registry.is_cross_encoder_model(architectures, self):
return "classify"
for arch in architectures:
match = try_match_architecture_defaults(arch,
runner_type="pooling")
if match:
_, (_, convert_type) = match
assert convert_type != "none"
return convert_type
return "embed"
def _get_supported_pooling_tasks(
self,
architectures: list[str],
convert_type: ConvertType,
) -> list[_ResolvedTask]:
registry = self.registry
# TODO: Use get_supported_pooling_tasks once V0 is removed
supported_tasks = list[_ResolvedTask]()
if (registry.is_pooling_model(architectures, self)
or convert_type in _RUNNER_CONVERTS["pooling"]):
supported_tasks.append("encode")
extra_task = (self._get_default_pooling_task(architectures)
if convert_type == "none" else convert_type)
supported_tasks.append(extra_task)
return supported_tasks
def _get_supported_tasks(
self,
architectures: list[str],
runner_type: RunnerType,
convert_type: ConvertType,
) -> list[_ResolvedTask]:
if runner_type == "generate":
return self._get_supported_generation_tasks(
architectures, convert_type)
if runner_type == "pooling":
return self._get_supported_pooling_tasks(architectures,
convert_type)
if runner_type == "draft":
return ["draft"]
assert_never(runner_type)
def _parse_quant_hf_config(self):
quant_cfg = getattr(self.hf_config, "quantization_config", None)
if quant_cfg is None:
# compressed-tensors uses a "compression_config" key
quant_cfg = getattr(self.hf_config, "compression_config", None)
else:
# Set quant_method for ModelOpt models.
producer_name = quant_cfg.get("producer", {}).get("name")
if producer_name == "modelopt":
quant_algo = quant_cfg.get("quantization",
{}).get("quant_algo")
if quant_algo == "FP8":
quant_cfg["quant_method"] = "modelopt"
elif quant_algo == "NVFP4":
quant_cfg["quant_method"] = "modelopt_fp4"
elif quant_algo is not None:
raise ValueError(
f"Unknown ModelOpt quant algo: {quant_algo}")
return quant_cfg
def _verify_quantization(self) -> None:
supported_quantization = me_quant.QUANTIZATION_METHODS
optimized_quantization_methods = [
"fp8",
"modelopt",
"gptq_marlin_24",
"gptq_marlin",
"awq_marlin",
"fbgemm_fp8",
"compressed-tensors",
"experts_int8",
"quark",
"modelopt_fp4",
"bitblas",
"gptq_bitblas",
"inc",
"petit_nvfp4",
]
if self.quantization is not None:
self.quantization = cast(me_quant.QuantizationMethods,
self.quantization)
# Parse quantization method from the HF model config, if available.
quant_cfg = self._parse_quant_hf_config()
if quant_cfg is not None:
# Use the community standard 'quant_method'
quant_method = quant_cfg.get("quant_method", "").lower()
# Normalize library names
quant_method = quant_method.replace("compressed_tensors",
"compressed-tensors")
quant_cfg["quant_method"] = quant_method
# Quantization methods which are overrides (i.e. they have a
# `override_quantization_method` method) must be checked in order
# of preference (this is particularly important for GPTQ).
overrides = [
"bitblas",
"gptq_marlin_24",
"gptq_marlin",
"gptq_bitblas",
"awq_marlin",
"ipex",
"moe_wna16",
"modelopt",
"modelopt_fp4",
"petit_nvfp4",
]
quantization_methods = [
q for q in supported_quantization if q not in overrides
]
# Any custom overrides will be in quantization_methods so we place
# them at the start of the list so custom overrides have preference
# over the built in ones.
quantization_methods = quantization_methods + overrides
# Detect which checkpoint is it
for name in quantization_methods:
method = me_quant.get_quantization_config(name)
quantization_override = method.override_quantization_method(
quant_cfg, self.quantization)
if quantization_override is not None:
# Raise error if the override is not custom (custom would
# be in QUANTIZATION_METHODS but not QuantizationMethods)
# and hasn't been added to the overrides list.
if (name in get_args(me_quant.QuantizationMethods)
and name not in overrides):
raise ValueError(
f"Quantization method {name} is an override but "
"is has not been added to the `overrides` list "
"above. This is necessary to ensure that the "
"overrides are checked in order of preference.")
quant_method = quantization_override
self.quantization = quantization_override
break
# Verify quantization configurations.
if self.quantization is None:
self.quantization = quant_method
elif self.quantization != quant_method:
raise ValueError(
"Quantization method specified in the model config "
f"({quant_method}) does not match the quantization "
f"method specified in the `quantization` argument "
f"({self.quantization}).")
if self.quantization is not None:
if self.quantization not in supported_quantization:
raise ValueError(
f"Unknown quantization method: {self.quantization}. Must "
f"be one of {supported_quantization}.")
from vllm.platforms import current_platform
current_platform.verify_quantization(self.quantization)
if self.quantization not in optimized_quantization_methods:
logger.warning(
"%s quantization is not fully "
"optimized yet. The speed can be slower than "
"non-quantized models.", self.quantization)
def _verify_cuda_graph(self) -> None:
# The `max_seq_len_to_capture` was incorrectly
# based on the encoder's input length (448)
# but not the decoder's larger input length (1500).
# This change ensures the CUDA Graph captures the correct,
# larger sequence length, allowing it to work as intended.
effective_max_seq_len = self.max_model_len
if self.is_encoder_decoder:
effective_max_seq_len = max(
effective_max_seq_len,
getattr(self.hf_config, "max_source_positions", 0))
self.max_seq_len_to_capture = min(self.max_seq_len_to_capture,
effective_max_seq_len)
# CUDAGraph capture not supported for enc-dec models and mllama on ROCm
ROCM_UNSUPPORTED_MODELS = ['mllama']
unsupported_rocm = (self.hf_config.model_type
in ROCM_UNSUPPORTED_MODELS
or self.is_encoder_decoder)
if (unsupported_rocm and not self.enforce_eager
and current_platform.is_rocm()):
logger.warning(
"CUDA graph is not supported for %s on ROCm yet, fallback "
"to eager mode.", self.hf_config.model_type)
self.enforce_eager = True
def _verify_bnb_config(self) -> None:
"""
The current version of bitsandbytes (0.46.1) with 8-bit models does not
yet support CUDA graph.
# TODO Remove this when bitsandbytes supports.
"""
is_bitsandbytes = self.quantization == "bitsandbytes"
has_quantization_config = (getattr(self.hf_config,
"quantization_config", None)
is not None)
is_8bit = (self.hf_config.quantization_config.get(
"load_in_8bit", False) if has_quantization_config else False)
if all([
is_bitsandbytes,
has_quantization_config,
is_8bit,
not self.enforce_eager,
]):
logger.warning(
"CUDA graph is not supported on BitsAndBytes 8bit yet, "
"fallback to the eager mode.")
self.enforce_eager = True
def _verify_with_expert_parallelism(self) -> None:
num_expert_names = [
"moe_num_experts", # Dbrx
"num_experts", # Jamba
"n_routed_experts", # DeepSeek
"num_local_experts", # Mixtral
]
num_experts = 0
for name in num_expert_names:
num_experts = getattr(self.hf_text_config, name, 0)
if num_experts > 0:
break
if num_experts < 1:
raise ValueError(
"Number of experts in the model must be greater than 0 "
"when expert parallelism is enabled.")
def verify_dual_chunk_attention_config(
self,
load_config: "LoadConfig",
) -> None:
if hasattr(self.hf_config, "dual_chunk_attention_config"):
# Try loading the sparse attention config
from vllm.model_executor.model_loader.weight_utils import (
get_sparse_attention_config)
sparse_attn_config = get_sparse_attention_config(self, load_config)
if sparse_attn_config:
self.hf_config.dual_chunk_attention_config[
"sparse_attention_config"] = sparse_attn_config
if "sparse_attention_enabled" not in \
self.hf_config.dual_chunk_attention_config:
self.hf_config.dual_chunk_attention_config[
"sparse_attention_enabled"] = True
if envs.VLLM_ATTENTION_BACKEND != STR_DUAL_CHUNK_FLASH_ATTN_VAL:
raise ValueError("please set VLLM_ATTENTION_BACKEND to "
f"{STR_DUAL_CHUNK_FLASH_ATTN_VAL}")
def verify_async_output_proc(self, parallel_config, speculative_config,
device_config) -> None:
if not self.use_async_output_proc:
# Nothing to check
return
if parallel_config.pipeline_parallel_size > 1:
self.use_async_output_proc = False
return
# Reminder: Please update docs/features/compatibility_matrix.md
# If the feature combo become valid
from vllm.platforms import current_platform
if not current_platform.is_async_output_supported(self.enforce_eager):
self.use_async_output_proc = False
return
if envs.VLLM_USE_RAY_SPMD_WORKER:
self.use_async_output_proc = False
return
# Async postprocessor is not necessary for pooling models
# since there is no token generation
if self.runner_type == "pooling":
self.use_async_output_proc = False
# Reminder: Please update docs/features/compatibility_matrix.md
# If the feature combo become valid
if speculative_config:
self.use_async_output_proc = False
def verify_with_parallel_config(
self,
parallel_config: "ParallelConfig",
) -> None:
if parallel_config.distributed_executor_backend == "external_launcher":
assert self.seed is not None, (
"Seed must be set when using external launcher backend to "
"make sure sampling results are the same across workers.")
total_num_attention_heads = getattr(self.hf_text_config,
"num_attention_heads", 0)
tensor_parallel_size = parallel_config.tensor_parallel_size
if total_num_attention_heads % tensor_parallel_size != 0:
raise ValueError(
f"Total number of attention heads ({total_num_attention_heads})"
" must be divisible by tensor parallel size "
f"({tensor_parallel_size}).")
if parallel_config.enable_expert_parallel:
self._verify_with_expert_parallelism()
pipeline_parallel_size = parallel_config.pipeline_parallel_size
if pipeline_parallel_size > 1:
if not self.registry.is_pp_supported_model(self.architectures,
self):
raise NotImplementedError(
"Pipeline parallelism is not supported for this model. "
"Supported models implement the `SupportsPP` interface.")
if self.use_async_output_proc:
self.use_async_output_proc = False
def get_sliding_window(self) -> Optional[int]:
"""Get the sliding window size from the HF text config if present."""
return getattr(self.hf_text_config, "sliding_window", None)
def get_vocab_size(self) -> int:
return getattr(self.hf_text_config, "vocab_size", 0)
def get_hidden_size(self) -> int:
return getattr(self.hf_text_config, "hidden_size", 0)
@property
def is_deepseek_mla(self) -> bool:
if not hasattr(self.hf_text_config, "model_type"):
return False
elif self.hf_text_config.model_type in \
('deepseek_v2', 'deepseek_v3', 'deepseek_mtp', 'kimi_k2'):
return self.hf_text_config.kv_lora_rank is not None
elif self.hf_text_config.model_type == 'eagle':
# if the model is an EAGLE module, check for the
# underlying architecture
return self.hf_text_config.model.model_type in \
('deepseek_v2', 'deepseek_v3') \
and self.hf_text_config.kv_lora_rank is not None
return False
def get_head_size(self) -> int:
# TODO remove hard code
if self.is_deepseek_mla:
qk_rope_head_dim = getattr(self.hf_text_config, "qk_rope_head_dim",
0)
if self.use_mla:
return self.hf_text_config.kv_lora_rank + qk_rope_head_dim
else:
qk_nope_head_dim = getattr(self.hf_text_config,
"qk_nope_head_dim", 0)
if qk_rope_head_dim and qk_nope_head_dim:
return qk_rope_head_dim + qk_nope_head_dim
if hasattr(self.hf_text_config,
"model_type") and (self.hf_text_config.model_type
== "zamba2"):
return self.hf_text_config.attention_head_dim
if self.is_attention_free:
return 0
# NOTE: Some configs may set head_dim=None in the config
if getattr(self.hf_text_config, "head_dim", None) is not None:
return self.hf_text_config.head_dim
# NOTE: Some models (such as PLaMo2.1) use `hidden_size_per_head`
if getattr(self.hf_text_config, "hidden_size_per_head",
None) is not None:
return self.hf_text_config.hidden_size_per_head
# FIXME(woosuk): This may not be true for all models.
return (self.hf_text_config.hidden_size //
self.hf_text_config.num_attention_heads)
def get_total_num_kv_heads(self) -> int:
"""Returns the total number of KV heads."""
# For GPTBigCode & Falcon:
# NOTE: for falcon, when new_decoder_architecture is True, the
# multi_query flag is ignored and we use n_head_kv for the number of
# KV heads.
falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
new_decoder_arch_falcon = (
self.hf_config.model_type in falcon_model_types
and getattr(self.hf_config, "new_decoder_architecture", False))
if not new_decoder_arch_falcon and getattr(self.hf_text_config,
"multi_query", False):
# Multi-query attention, only one KV head.
# Currently, tensor parallelism is not supported in this case.
return 1
# For DBRX and MPT
if self.hf_config.model_type == "mpt":
if "kv_n_heads" in self.hf_config.attn_config:
return self.hf_config.attn_config["kv_n_heads"]
return self.hf_config.num_attention_heads
if self.hf_config.model_type == "dbrx":
return getattr(self.hf_config.attn_config, "kv_n_heads",
self.hf_config.num_attention_heads)
if self.hf_config.model_type == "nemotron-nas":
for block in self.hf_config.block_configs:
if not block.attention.no_op:
return self.hf_config.num_attention_heads \
// block.attention.n_heads_in_group
raise RuntimeError("Couldn't determine number of kv heads")
if self.is_attention_free:
return 0
attributes = [
# For Falcon:
"n_head_kv",
"num_kv_heads",
# For LLaMA-2:
"num_key_value_heads",
# For ChatGLM:
"multi_query_group_num",
]
for attr in attributes:
num_kv_heads = getattr(self.hf_text_config, attr, None)
if num_kv_heads is not None:
return num_kv_heads
# For non-grouped-query attention models, the number of KV heads is
# equal to the number of attention heads.
return self.hf_text_config.num_attention_heads
def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
"""Returns the number of KV heads per GPU."""
if self.use_mla:
# When using MLA during decode it becomes MQA
return 1
total_num_kv_heads = self.get_total_num_kv_heads()
# If tensor parallelism is used, we divide the number of KV heads by
# the tensor parallel size. We will replicate the KV heads in the
# case where the number of KV heads is smaller than the tensor
# parallel size so each GPU has at least one KV head.
return max(1,
total_num_kv_heads // parallel_config.tensor_parallel_size)
def get_num_attention_heads(self,
parallel_config: "ParallelConfig") -> int:
num_heads = getattr(self.hf_text_config, "num_attention_heads", 0)
return num_heads // parallel_config.tensor_parallel_size
def get_layers_start_end_indices(
self, parallel_config: "ParallelConfig") -> tuple[int, int]:
from vllm.distributed.utils import get_pp_indices
if (self.hf_text_config.model_type == "deepseek_mtp"
or self.hf_config.model_type == "mimo_mtp"
or self.hf_config.model_type == "glm4_moe_mtp"
or self.hf_config.model_type == "ernie_mtp"):
total_num_hidden_layers = getattr(self.hf_text_config,
"num_nextn_predict_layers", 0)
else:
total_num_hidden_layers = getattr(self.hf_text_config,
"num_hidden_layers", 0)
# the layout order is: DP x PP x TP
pp_rank = (parallel_config.rank // parallel_config.tensor_parallel_size
) % parallel_config.pipeline_parallel_size
pp_size = parallel_config.pipeline_parallel_size
start, end = get_pp_indices(total_num_hidden_layers, pp_rank, pp_size)
return start, end
def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
start, end = self.get_layers_start_end_indices(parallel_config)
return end - start
def get_num_layers_by_block_type(
self,
parallel_config: "ParallelConfig",
block_type: LayerBlockType = LayerBlockType.attention,
) -> int:
# This function relies on 'layers_block_type' in hf_config,
# for w/o this attribute, we will need to have workarounds like so
attn_block_type = block_type == LayerBlockType.attention
is_transformer = not self.is_hybrid and \
not self.has_noops and \
not self.is_attention_free
start, end = self.get_layers_start_end_indices(parallel_config)
if is_transformer:
# Handle the basic case first
return end - start if attn_block_type else 0
elif self.is_attention_free:
# Attention free
# Note that this code assumes there
# is only one type of attention-free block type.
return 0 if attn_block_type else end - start
elif self.has_noops:
block_configs = self.hf_config.block_configs
return sum(not bc.attention.no_op
for bc in block_configs[start:end])
else:
# Hybrid model Jamba
layers_block_type_value = getattr(self.hf_config,
"layers_block_type", None)
if layers_block_type_value is not None:
if hasattr(self.hf_text_config,
"model_type") and (self.hf_text_config.model_type
== "zamba2"):
if attn_block_type:
return sum(t == "hybrid"
for t in layers_block_type_value[start:end])
else:
return self.get_num_layers(parallel_config)
return sum(t == block_type.value
for t in layers_block_type_value[start:end])
# Hybrid model Minimax
attn_type_list = getattr(self.hf_config, "attn_type_list", None)
if attn_type_list:
return sum(t == 1 for t in attn_type_list[start:end])
if layers_block_type_value is None and attn_type_list is None:
raise ValueError(
"The model is an hybrid without a"
"layers_block_type or an attn_type_list in the hf_config,"
"cannot determine the num of "
f"{block_type.value} layers")
return sum(t == 1 for t in attn_type_list[start:end])
def get_mamba_chunk_size(self) -> Optional[int]:
"""
Returns the mamba chunk size if it exists
"""
# used by e.g. Bamba, FalconH1, Granite, PLaMo2
chunk_size = getattr(self.hf_text_config, "mamba_chunk_size", None)
if chunk_size is None:
# used by e.g. Mamba2, NemotronH, Zamba
chunk_size = getattr(self.hf_text_config, "chunk_size", None)
return chunk_size
def get_multimodal_config(self) -> "MultiModalConfig":
"""
Get the multimodal configuration of the model.
Raises:
ValueError: If the model is not multimodal.
"""
if self.multimodal_config is None:
raise ValueError("The model is not multimodal.")
return self.multimodal_config
def try_get_generation_config(self) -> dict[str, Any]:
"""
This method attempts to retrieve the non-default values of the
generation config for this model.
The generation config can contain information about special tokens, as
well as sampling parameters. Which is why this method exists separately
to `get_diff_sampling_param`.
Returns:
A dictionary containing the non-default generation config.
"""
if self.generation_config in {"auto", "vllm"}:
config = try_get_generation_config(
self.hf_config_path or self.model,
trust_remote_code=self.trust_remote_code,
revision=self.revision,
)
else:
config = try_get_generation_config(
self.generation_config,
trust_remote_code=self.trust_remote_code,
)
if config is None:
return {}
return config.to_diff_dict()
def get_diff_sampling_param(self) -> dict[str, Any]:
"""
This method returns a dictionary containing the non-default sampling
parameters with `override_generation_config` applied.
The default sampling parameters are:
- vLLM's neutral defaults if `self.generation_config="vllm"`
- the model's defaults if `self.generation_config="auto"`
- as defined in `generation_config.json` if
`self.generation_config="path/to/generation_config/dir"`
Returns:
A dictionary containing the non-default sampling parameters.
"""
if self.generation_config == "vllm":
config = {}
else:
config = self.try_get_generation_config()
# Overriding with given generation config
config.update(self.override_generation_config)
available_params = [
"repetition_penalty",
"temperature",
"top_k",
"top_p",
"min_p",
"max_new_tokens",
]
if any(p in config for p in available_params):
diff_sampling_param = {
p: config.get(p)
for p in available_params if config.get(p) is not None
}
# Huggingface definition of max_new_tokens is equivalent
# to vLLM's max_tokens
if "max_new_tokens" in diff_sampling_param:
diff_sampling_param["max_tokens"] = diff_sampling_param.pop(
"max_new_tokens")
else:
diff_sampling_param = {}
if diff_sampling_param:
logger.warning_once(
"Default sampling parameters have been overridden by the "
"model's Hugging Face generation config recommended from the "
"model creator. If this is not intended, please relaunch "
"vLLM instance with `--generation-config vllm`.")
return diff_sampling_param
@property
def is_encoder_decoder(self) -> bool:
"""Extract the HF encoder/decoder model flag."""
"""
For Mllama, VLLM overrides HF's is_encoder_decoder flag and sets it to
True to enable cross-attention
"""
return is_encoder_decoder(self.hf_config)
@property
def uses_mrope(self) -> bool:
return uses_mrope(self.hf_config)
@property
def is_multimodal_model(self) -> bool:
return self.multimodal_config is not None
@property
def is_multimodal_raw_input_only_model(self) -> bool:
return self._model_info.supports_multimodal_raw_input_only
@property
def is_cross_encoder(self) -> bool:
return (self._model_info.supports_cross_encoding
or self.convert_type == "classify")
@property
def is_pp_supported(self) -> bool:
return self._model_info.supports_pp
@property
def is_attention_free(self) -> bool:
return self._model_info.is_attention_free
@property
def is_hybrid(self) -> bool:
return self._model_info.is_hybrid
@property
def has_noops(self) -> bool:
return self._model_info.has_noops
@property
def has_inner_state(self):
return self._model_info.has_inner_state
@property
def is_v1_compatible(self) -> bool:
return not self._model_info.supports_v0_only
@property
def use_mla(self) -> bool:
return self.is_deepseek_mla and not envs.VLLM_MLA_DISABLE
@property
def is_matryoshka(self) -> bool:
return (bool(getattr(self.hf_config, "matryoshka_dimensions", None))
or getattr(self.hf_config, "is_matryoshka", False))
@property
def matryoshka_dimensions(self):
return getattr(self.hf_config, "matryoshka_dimensions", None)
@property
def use_pad_token(self) -> bool:
# cross_encoder models defaults to using pad_token.
# `llm as reranker` models defaults to not using pad_token.
return getattr(self.hf_config, "use_pad_token", True)
def get_and_verify_max_len(self, max_model_len: int):
# Consider max_model_len in tokenizer_config only when
# pooling models use absolute position_embedding.
tokenizer_config = None
if (self.runner_type == "pooling" and getattr(
self.hf_config, "position_embedding_type", "") == "absolute"):
tokenizer_config = try_get_tokenizer_config(
self.tokenizer,
trust_remote_code=self.trust_remote_code,
revision=self.tokenizer_revision)
max_model_len = _get_and_verify_max_len(
hf_config=self.hf_text_config,
tokenizer_config=tokenizer_config,
max_model_len=max_model_len,
disable_sliding_window=self.disable_sliding_window,
sliding_window=self.get_sliding_window(),
spec_target_max_model_len=self.spec_target_max_model_len,
encoder_config=self.encoder_config)
logger.info("Using max model len %s", max_model_len)
return max_model_len
@config
@dataclass
class LoadConfig:
"""Configuration for loading the model weights."""
load_format: Union[str, LoadFormats] = "auto"
"""The format of the model weights to load:\n
- "auto" will try to load the weights in the safetensors format and fall
back to the pytorch bin format if safetensors format is not available.\n
- "pt" will load the weights in the pytorch bin format.\n
- "safetensors" will load the weights in the safetensors format.\n
- "npcache" will load the weights in pytorch format and store a numpy cache
to speed up the loading.\n
- "dummy" will initialize the weights with random values, which is mainly
for profiling.\n
- "tensorizer" will use CoreWeave's tensorizer library for fast weight
loading. See the Tensorize vLLM Model script in the Examples section for
more information.\n
- "runai_streamer" will load the Safetensors weights using Run:ai Model
Streamer.\n
- "bitsandbytes" will load the weights using bitsandbytes quantization.\n
- "sharded_state" will load weights from pre-sharded checkpoint files,
supporting efficient loading of tensor-parallel models.\n
- "gguf" will load weights from GGUF format files (details specified in
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md).\n
- "mistral" will load weights from consolidated safetensors files used by
Mistral models.
- Other custom values can be supported via plugins."""
download_dir: Optional[str] = None
"""Directory to download and load the weights, default to the default
cache directory of Hugging Face."""
model_loader_extra_config: Union[dict, TensorizerConfig] = field(
default_factory=dict)
"""Extra config for model loader. This will be passed to the model loader
corresponding to the chosen load_format."""
device: Optional[str] = None
"""Device to which model weights will be loaded, default to
device_config.device"""
ignore_patterns: Optional[Union[list[str], str]] = None
"""The list of patterns to ignore when loading the model. Default to
"original/**/*" to avoid repeated loading of llama's checkpoints."""
use_tqdm_on_load: bool = True
"""Whether to enable tqdm for showing progress bar when loading model
weights."""
pt_load_map_location: Union[str, dict[str, str]] = "cpu"
"""
pt_load_map_location: the map location for loading pytorch checkpoint, to
support loading checkpoints can only be loaded on certain devices like
"cuda", this is equivalent to {"": "cuda"}. Another supported format is
mapping from different devices like from GPU 1 to GPU 0:
{"cuda:1": "cuda:0"}. Note that when passed from command line, the strings
in dictionary needs to be double quoted for json parsing. For more details,
see original doc for `map_location` in https://pytorch.org/docs/stable/generated/torch.load.html
"""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
self.load_format = self.load_format.lower()
if self.ignore_patterns is not None and len(self.ignore_patterns) > 0:
logger.info(
"Ignoring the following patterns when downloading weights: %s",
self.ignore_patterns)
else:
self.ignore_patterns = ["original/**/*"]
Device = Literal["auto", "cuda", "cpu", "tpu", "xpu"]
@config
@dataclass(config=ConfigDict(arbitrary_types_allowed=True))
class DeviceConfig:
"""Configuration for the device to use for vLLM execution."""
device: SkipValidation[Optional[Union[Device, torch.device]]] = "auto"
"""Device type for vLLM execution.
This parameter is deprecated and will be
removed in a future release.
It will now be set automatically based
on the current platform."""
device_type: str = field(init=False)
"""Device type from the current platform. This is set in
`__post_init__`."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# the device/platform information will be summarized
# by torch/vllm automatically.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
if self.device == "auto":
# Automated device type detection
from vllm.platforms import current_platform
self.device_type = current_platform.device_type
if not self.device_type:
raise RuntimeError(
"Failed to infer device type, please set "
"the environment variable `VLLM_LOGGING_LEVEL=DEBUG` "
"to turn on verbose logging to help debug the issue.")
else:
# Device type is assigned explicitly
if isinstance(self.device, str):
self.device_type = self.device
elif isinstance(self.device, torch.device):
self.device_type = self.device.type
# Some device types require processing inputs on CPU
if self.device_type in ["tpu"]:
self.device = None
else:
# Set device with device type
self.device = torch.device(self.device_type)
SpeculativeMethod = Literal["ngram", "eagle", "eagle3", "medusa",
"mlp_speculator", "draft_model", "deepseek_mtp",
"ernie_mtp"]
@config
@dataclass
class SpeculativeConfig:
"""Configuration for speculative decoding."""
# General speculative decoding control
num_speculative_tokens: SkipValidation[int] = None # type: ignore
"""The number of speculative tokens, if provided. It will default to the
number in the draft model config if present, otherwise, it is required."""
model: Optional[str] = None
"""The name of the draft model, eagle head, or additional weights, if
provided."""
method: Optional[SpeculativeMethod] = None
"""The name of the speculative method to use. If users provide and set the
`model` param, the speculative method type will be detected automatically
if possible, if `model` param is not provided, the method name must be
provided.
If using `ngram` method, the related configuration `prompt_lookup_max` and
`prompt_lookup_min` should be considered."""
draft_tensor_parallel_size: Optional[int] = None
"""The degree of the tensor parallelism for the draft model. Can only be 1
or the same as the target model's tensor parallel size."""
disable_logprobs: bool = True
"""If set to True, token log probabilities are not returned during
speculative decoding. If set to False, token log probabilities are returned
according to the log probability settings in SamplingParams."""
# Draft model configuration
quantization: Optional[me_quant.QuantizationMethods] = None
"""Quantization method that was used to quantize the draft model weights.
If `None`, we assume the model weights are not quantized. Note that it only
takes effect when using the draft model-based speculative method."""
max_model_len: Optional[int] = None
"""The maximum model length of the draft model. Used when testing the
ability to skip speculation for some sequences."""
revision: Optional[str] = None
"""The specific model version to use for the draft model. It can be a
branch name, a tag name, or a commit id. If unspecified, will use the
default version."""
code_revision: Optional[str] = None
"""The specific revision to use for the draft model code on Hugging Face
Hub. It can be a branch name, a tag name, or a commit id. If unspecified,
will use the default version."""
# Advanced control
disable_by_batch_size: Optional[int] = None
"""Disable speculative decoding for new incoming requests when the number
of enqueued requests is larger than this value, if provided."""
# Ngram proposer configuration
prompt_lookup_max: Optional[int] = None
"""Maximum size of ngram token window when using Ngram proposer, required
when method is set to ngram."""
prompt_lookup_min: Optional[int] = None
"""Minimum size of ngram token window when using Ngram proposer, if
provided. Defaults to 1."""
speculative_token_tree: Optional[str] = None
"""Specifies the tree structure for speculative token generation.
"""
# required configuration params passed from engine
target_model_config: SkipValidation[ModelConfig] = None # type: ignore
"""The configuration of the target model."""
target_parallel_config: SkipValidation[
ParallelConfig] = None # type: ignore
"""The parallel configuration for the target model."""
enable_chunked_prefill: SkipValidation[bool] = None # type: ignore
"""Whether vLLM is configured to use chunked prefill or not. Used for
raising an error since it's not yet compatible with speculative decode."""
disable_log_stats: SkipValidation[bool] = None # type: ignore
"""Whether to disable the periodic printing of stage times in speculative
decoding."""
# params generated in the post-init stage
draft_model_config: SkipValidation[ModelConfig] = None # type: ignore
"""The configuration of the draft model initialized internal."""
draft_parallel_config: SkipValidation[
ParallelConfig] = None # type: ignore
"""The parallel configuration for the draft model initialized internal."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
# Eagle3 affects the computation graph because it returns intermediate
# hidden states in addition to the final hidden state.
factors.append(self.method == "eagle3")
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
@staticmethod
def hf_config_override(hf_config: PretrainedConfig) -> PretrainedConfig:
if hf_config.model_type == "deepseek_v3":
hf_config.model_type = "deepseek_mtp"
if hf_config.model_type == "deepseek_mtp":
n_predict = getattr(hf_config, "num_nextn_predict_layers", None)
hf_config.update({
"n_predict": n_predict,
"architectures": ["DeepSeekMTPModel"]
})
if hf_config.architectures[0] == "MiMoForCausalLM":
hf_config.model_type = "mimo_mtp"
n_predict = getattr(hf_config, "num_nextn_predict_layers", None)
hf_config.update({
"num_hidden_layers": 0,
"n_predict": n_predict,
"architectures": ["MiMoMTPModel"]
})
if hf_config.architectures[0] == "Glm4MoeForCausalLM":
hf_config.model_type = "glm4_moe_mtp"
n_predict = getattr(hf_config, "num_nextn_predict_layers", None)
hf_config.update({
"num_hidden_layers": 0,
"n_predict": n_predict,
"architectures": ["Glm4MoeMTPModel"]
})
if hf_config.model_type == "ernie4_5_moe":
hf_config.model_type = "ernie_mtp"
if hf_config.model_type == "ernie_mtp":
n_predict = getattr(hf_config, "num_nextn_predict_layers", None)
hf_config.update({
"n_predict": n_predict,
"architectures": ["ErnieMTPModel"]
})
return hf_config
return hf_config
def __post_init__(self):
# Note: "method" is a new parameter that helps to extend the
# configuration of non-model-based proposers, and the "model" parameter
# will be used to set the draft model, eagle head, or additional weight
# when needed. If users do not specify "method", the speculative method
# will be detected automatically if possible. If the speculative method
# can not be detected, it will be considered as the "draft_model" by
# default.
if self.model is None and self.num_speculative_tokens is not None:
# TODO(Shangming): Refactor mtp configuration logic when supporting
# mtp acceleration for more models besides deepseek_v3
if self.target_model_config and \
(self.target_model_config.hf_text_config.model_type \
== "deepseek_v3" or
self.target_model_config.hf_text_config.model_type in
("mimo","ernie4_5_moe")):
# use the draft model from the same model:
self.model = self.target_model_config.model
elif self.method in ("ngram", "[ngram]"):
self.model = "ngram"
else:
raise ValueError("num_speculative_tokens was provided without "
"speculative model.")
# Automatically configure the method for ngram when "model" is used
# instead of "method"
if self.method is None and (self.model is not None
and self.model in ("ngram", "[ngram]")):
self.method = "ngram"
if self.method in ("ngram", "[ngram]"):
# Unified to "ngram" internally
self.method = "ngram"
# Set default values if not provided
if (self.prompt_lookup_min is None
and self.prompt_lookup_max is None):
# TODO(woosuk): Tune these values. They are arbitrarily chosen.
self.prompt_lookup_min = 5
self.prompt_lookup_max = 5
elif self.prompt_lookup_min is None:
assert self.prompt_lookup_max is not None
self.prompt_lookup_min = self.prompt_lookup_max
elif self.prompt_lookup_max is None:
assert self.prompt_lookup_min is not None
self.prompt_lookup_max = self.prompt_lookup_min
# Validate values
if self.prompt_lookup_min < 1:
raise ValueError(
f"prompt_lookup_min={self.prompt_lookup_min} must be > 0")
if self.prompt_lookup_max < 1:
raise ValueError(
f"prompt_lookup_max={self.prompt_lookup_max} must be > 0")
if self.prompt_lookup_min > self.prompt_lookup_max:
raise ValueError(
f"prompt_lookup_min={self.prompt_lookup_min} must "
f"be <= prompt_lookup_max={self.prompt_lookup_max}")
# TODO: current we still need extract vocab_size from target model
# config, in future, we may try refactor it out, and set
# draft related config as None here.
self.draft_model_config = self.target_model_config
self.draft_parallel_config = self.target_parallel_config
else:
self.prompt_lookup_max = 0
self.prompt_lookup_min = 0
if self.model is not None:
self.draft_model_config = ModelConfig(
model=self.model,
runner="draft",
tokenizer=self.target_model_config.tokenizer,
tokenizer_mode=self.target_model_config.tokenizer_mode,
trust_remote_code=self.target_model_config.
trust_remote_code,
allowed_local_media_path=self.target_model_config.
allowed_local_media_path,
dtype=self.target_model_config.dtype,
seed=self.target_model_config.seed,
revision=self.revision,
code_revision=self.code_revision,
tokenizer_revision=self.target_model_config.
tokenizer_revision,
spec_target_max_model_len=self.target_model_config.
max_model_len,
quantization=self.quantization,
enforce_eager=self.target_model_config.enforce_eager,
max_seq_len_to_capture=self.target_model_config.
max_seq_len_to_capture,
max_logprobs=self.target_model_config.max_logprobs,
hf_overrides=SpeculativeConfig.hf_config_override,
)
# Automatically detect the method
if self.method in ('eagle', 'eagle3'):
pass
elif "eagle-" in self.draft_model_config.model.lower() or \
"eagle3-" in self.draft_model_config.model.lower():
self.method = "eagle"
elif self.draft_model_config.hf_config.model_type == "medusa":
self.method = "medusa"
elif (self.draft_model_config.hf_config.model_type ==
"mlp_speculator"):
self.method = "mlp_speculator"
elif (self.draft_model_config.hf_config.model_type
in ("deepseek_mtp", "mimo_mtp", "glm4_moe_mtp")):
self.method = "deepseek_mtp"
if self.num_speculative_tokens > 1:
logger.warning(
"All Deepseek MTP models only have " \
"one layer. Might need some code changes " \
"to support multiple layers."
)
elif (self.draft_model_config.hf_config.model_type ==
"ernie_mtp"):
self.method = "ernie_mtp"
if self.num_speculative_tokens > 1:
logger.warning(
"All Ernie MTP models only have " \
"one layer. Might need some code changes " \
"to support multiple layers."
)
else:
self.method = "draft_model"
raise NotImplementedError(
"Speculative decoding with draft model is not "
"supported yet. Please consider using other "
"speculative decoding methods such as ngram, medusa, "
"eagle, or deepseek_mtp.")
# Replace hf_config for EAGLE draft_model
if self.method in ("eagle", "eagle3"):
if self.enable_chunked_prefill and not envs.VLLM_USE_V1:
raise ValueError(
"Chunked prefill and EAGLE are not compatible "
"when using V0.")
from vllm.transformers_utils.configs import (
SpeculatorsConfig)
from vllm.transformers_utils.configs.eagle import (
EAGLEConfig)
if isinstance(self.draft_model_config.hf_config,
(EAGLEConfig, SpeculatorsConfig)):
pass
else:
eagle_config = EAGLEConfig(
self.draft_model_config.hf_config,
method=self.method,
model_type="eagle")
self.draft_model_config.hf_config = eagle_config
if (self.num_speculative_tokens is not None
and hasattr(self.draft_model_config.hf_config,
"num_lookahead_tokens")):
self.draft_model_config.hf_config.num_lookahead_tokens = \
self.num_speculative_tokens
n_predict = getattr(self.draft_model_config.hf_config,
"n_predict", None)
if n_predict is not None:
if self.num_speculative_tokens is None:
# Default to max value defined in draft model config.
self.num_speculative_tokens = n_predict
elif self.num_speculative_tokens > n_predict and \
self.num_speculative_tokens % n_predict != 0:
# Ensure divisibility for MTP module reuse.
raise ValueError(
f"num_speculative_tokens:{self.num_speculative_tokens}"
f" must be divisible by {n_predict=}")
if self.speculative_token_tree is None:
# Generate chain of tokens.
self.speculative_token_tree = str([
(i + 1) * (0, )
for i in range(self.num_speculative_tokens)
])
else:
# Sort the token tree breadth-first.
tree_choices = ast.literal_eval(
self.speculative_token_tree)
self.speculative_token_tree = str(
sorted(tree_choices, key=lambda t: (len(t), t)))
self.draft_tensor_parallel_size = \
SpeculativeConfig._verify_and_get_draft_tp(
self.target_parallel_config,
self.draft_tensor_parallel_size,
self.draft_model_config.hf_config
)
self.draft_model_config.max_model_len = (
SpeculativeConfig._maybe_override_draft_max_model_len(
self.max_model_len,
self.draft_model_config.max_model_len,
self.target_model_config.max_model_len,
))
self.draft_parallel_config = (
SpeculativeConfig.create_draft_parallel_config(
self.target_parallel_config,
self.draft_tensor_parallel_size))
@staticmethod
def _maybe_override_draft_max_model_len(
speculative_max_model_len: Optional[int],
draft_max_model_len: int,
target_max_model_len: int,
) -> int:
"""Determine the max sequence len for the draft model. This is usually
the draft_max_model_len, but may be the target_max_model_len if it is
less than the draft_max_model_len, or may be speculative_max_model_len
if it is specified.
This is necessary so that sequences do not exceed the capacity of the
draft model or the target model.
speculative_max_model_len is mainly used for testing that sequences can
skip speculation.
"""
if speculative_max_model_len is not None:
if speculative_max_model_len > draft_max_model_len:
raise ValueError(f"{speculative_max_model_len=} cannot be "
f"larger than {draft_max_model_len=}")
if speculative_max_model_len > target_max_model_len:
raise ValueError(f"{speculative_max_model_len=} cannot be "
f"larger than {target_max_model_len=}")
return speculative_max_model_len
return min(
draft_max_model_len,
target_max_model_len,
)
@staticmethod
def _verify_and_get_draft_tp(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: Optional[int],
draft_hf_config: PretrainedConfig) -> int:
"""
Verifies and adjusts the tensor parallel size for a draft model
specified using speculative_draft_tensor_parallel_size.
"""
# If speculative_draft_tensor_parallel_size is unset then set it
# appropriately else verify that it is set correctly.
if speculative_draft_tensor_parallel_size is None:
if draft_hf_config.model_type == "mlp_speculator":
speculative_draft_tensor_parallel_size = 1
if target_parallel_config.tensor_parallel_size > 1:
logger.warning(
"%s cannot currently be run with tp>1; "
"setting speculative_draft_tensor_parallel_size=1",
draft_hf_config.model_type)
else:
speculative_draft_tensor_parallel_size = \
target_parallel_config.tensor_parallel_size
elif speculative_draft_tensor_parallel_size not in (
1, target_parallel_config.tensor_parallel_size):
raise ValueError(
f"{speculative_draft_tensor_parallel_size=} cannot be "
f"other value than 1 or target model tensor_parallel_size")
return speculative_draft_tensor_parallel_size
@staticmethod
def create_draft_parallel_config(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: int,
) -> ParallelConfig:
"""Create a parallel config for use by the draft worker.
This is mostly a copy of the target parallel config, except the tp_size.
"""
draft_parallel_config = ParallelConfig(
pipeline_parallel_size=target_parallel_config.
pipeline_parallel_size,
tensor_parallel_size=speculative_draft_tensor_parallel_size,
distributed_executor_backend=target_parallel_config.
distributed_executor_backend,
max_parallel_loading_workers=target_parallel_config.
max_parallel_loading_workers,
disable_custom_all_reduce=target_parallel_config.
disable_custom_all_reduce,
ray_workers_use_nsight=target_parallel_config.
ray_workers_use_nsight,
placement_group=target_parallel_config.placement_group,
)
return draft_parallel_config
@model_validator(mode='after')
def _verify_args(self) -> Self:
if self.num_speculative_tokens is None:
raise ValueError(
"num_speculative_tokens must be provided with "
"speculative model unless the draft model config contains an "
"n_predict parameter.")
if self.num_speculative_tokens <= 0:
raise ValueError("Expected num_speculative_tokens to be greater "
f"than zero ({self.num_speculative_tokens}).")
if self.draft_model_config:
self.draft_model_config.verify_with_parallel_config(
self.draft_parallel_config)
if (self.disable_by_batch_size is not None
and self.disable_by_batch_size < 2):
raise ValueError("Expect the batch size threshold of disabling "
"speculative decoding is > 1, but got "
f"{self.disable_by_batch_size=}")
eagle3_target_supported = ["llama", "qwen"]
if self.method == "eagle3" and self.target_model_config and not any(
supported_model in
self.target_model_config.hf_text_config.model_type
for supported_model in eagle3_target_supported):
raise ValueError(
f"Eagle3 is only supported for {eagle3_target_supported} models. " # noqa: E501
f"Got {self.target_model_config.hf_text_config.model_type=}")
return self
@property
def num_lookahead_slots(self) -> int:
"""The number of additional slots the scheduler should allocate per
step, in addition to the slots allocated for each known token.
This is equal to the number of speculative tokens, as each speculative
token must be scored.
"""
return self.num_speculative_tokens
def use_eagle(self) -> bool:
return self.method in ("eagle", "eagle3", "deepseek_mtp", "ernie_mtp")
def __repr__(self) -> str:
method = self.method
model = None if method == "ngram" else self.draft_model_config.model
num_spec_tokens = self.num_speculative_tokens
return f"SpeculativeConfig({method=}, {model=}, {num_spec_tokens=})"
LoRADType = Literal["auto", "float16", "bfloat16"]
@config
@dataclass(config=ConfigDict(arbitrary_types_allowed=True))
class LoRAConfig:
"""Configuration for LoRA."""
max_lora_rank: int = 16
"""Max LoRA rank."""
max_loras: int = 1
"""Max number of LoRAs in a single batch."""
fully_sharded_loras: bool = False
"""By default, only half of the LoRA computation is sharded with tensor
parallelism. Enabling this will use the fully sharded layers. At high
sequence length, max rank or tensor parallel size, this is likely faster.
"""
max_cpu_loras: Optional[int] = None
"""Maximum number of LoRAs to store in CPU memory. Must be >= than
`max_loras`."""
lora_dtype: Union[torch.dtype, LoRADType] = "auto"
"""Data type for LoRA. If auto, will default to base model dtype."""
lora_extra_vocab_size: int = 256
"""(Deprecated) Maximum size of extra vocabulary that can be present in a
LoRA adapter. Will be removed in v0.12.0."""
lora_vocab_padding_size: ClassVar[int] = current_platform\
.get_lora_vocab_padding_size()
default_mm_loras: Optional[dict[str, str]] = None
"""Dictionary mapping specific modalities to LoRA model paths; this field
is only applicable to multimodal models and should be leveraged when a
model always expects a LoRA to be active when a given modality is present.
Note that currently, if a request provides multiple additional
modalities, each of which have their own LoRA, we do NOT apply
default_mm_loras because we currently only support one lora adapter
per prompt. When run in offline mode, the lora IDs for n modalities
will be automatically assigned to 1-n with the names of the modalities
in alphabetic order."""
bias_enabled: bool = False
"""[DEPRECATED] Enable bias for LoRA adapters. This option will be
removed in v0.12.0."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
factors.append(self.max_lora_rank)
factors.append(self.max_loras)
factors.append(self.fully_sharded_loras)
factors.append(self.lora_dtype)
factors.append(self.lora_extra_vocab_size)
factors.append(self.lora_vocab_padding_size)
factors.append(self.bias_enabled)
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
# Deprecation warning for lora_extra_vocab_size
logger.warning(
"`lora_extra_vocab_size` is deprecated and will be removed "
"in v0.12.0. Additional vocabulary support for "
"LoRA adapters is being phased out.")
# Deprecation warning for enable_lora_bias
if self.bias_enabled:
logger.warning("`enable_lora_bias` is deprecated "
"and will be removed in v0.12.0.")
# Setting the maximum rank to 512 should be able to satisfy the vast
# majority of applications.
possible_max_ranks = (8, 16, 32, 64, 128, 256, 320, 512)
possible_lora_extra_vocab_size = (256, 512)
if self.max_lora_rank not in possible_max_ranks:
raise ValueError(
f"max_lora_rank ({self.max_lora_rank}) must be one of "
f"{possible_max_ranks}.")
if self.lora_extra_vocab_size not in possible_lora_extra_vocab_size:
raise ValueError(
f"lora_extra_vocab_size ({self.lora_extra_vocab_size}) "
f"must be one of {possible_lora_extra_vocab_size}.")
if self.max_loras < 1:
raise ValueError(f"max_loras ({self.max_loras}) must be >= 1.")
if self.max_cpu_loras is None:
self.max_cpu_loras = self.max_loras
elif self.max_cpu_loras < self.max_loras:
raise ValueError(
f"max_cpu_loras ({self.max_cpu_loras}) must be >= "
f"max_loras ({self.max_loras})")
def verify_with_cache_config(self, cache_config: CacheConfig):
if cache_config.cpu_offload_gb > 0 and not envs.VLLM_USE_V1:
raise ValueError(
"V0 LoRA does not support CPU offload, please use V1.")
def verify_with_model_config(self, model_config: ModelConfig):
if self.lora_dtype in (None, "auto"):
self.lora_dtype = model_config.dtype
elif isinstance(self.lora_dtype, str):
self.lora_dtype = getattr(torch, self.lora_dtype)
@config
@dataclass
class MultiModalConfig:
"""Controls the behavior of multimodal models."""
limit_per_prompt: dict[str, int] = \
cast(dict[str, int], get_field(ModelConfig, "limit_mm_per_prompt"))
"""
The maximum number of input items allowed per prompt for each modality.
Defaults to 1 (V0) or 999 (V1) for each modality.
For example, to allow up to 16 images and 2 videos per prompt:
`{"image": 16, "video": 2}`
"""
media_io_kwargs: dict[str, dict[str, Any]] = field(default_factory=dict)
"""Additional args passed to process media inputs, keyed by modalities.
For example, to set num_frames for video, set
`--media-io-kwargs '{"video": {"num_frames": 40} }'` """
mm_processor_kwargs: Optional[dict[str, object]] = None
"""
Overrides for the multi-modal processor obtained from
`transformers.AutoProcessor.from_pretrained`.
The available overrides depend on the model that is being run.
For example, for Phi-3-Vision:
`{"num_crops": 4}`.
"""
mm_processor_cache_gb: float = 4
"""
The size (in GiB) of the multi-modal processor cache, which is used to
This cache is duplicated for each API process and engine core process,
resulting in a total memory usage of
`mm_processor_cache_gb * (api_server_count + data_parallel_size)`.
Set to `0` to disable this cache completely (not recommended).
"""
mm_encoder_tp_mode: MMEncoderTPMode = "weights"
"""
Indicates how to optimize multi-modal encoder inference using
tensor parallelism (TP).
- `"weights"`: Within the same vLLM engine, split the weights of
each layer across TP ranks. (default TP behavior)
- `"data"`: Within the same vLLM engine, split the batched input data
across TP ranks to process the data in parallel, while hosting
the full weights on each TP rank.
This batch-level DP is not to be confused with API request-level
DP (which is controlled by `--data-parallel-size`).
This is only supported on a per-model basis and falls back to
`"weights"` if the encoder does not support DP.
"""
interleave_mm_strings: bool = False
"""
Enable fully interleaved support for multimodal prompts.
"""
skip_mm_profiling: bool = False
"""
When enabled, skips multimodal memory profiling and only profiles with
language backbone model during engine initialization.
This reduces engine startup time but shifts the responsibility to users for
estimating the peak memory usage of the activation of multimodal encoder and
embedding cache.
"""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def get_limit_per_prompt(self, modality: str) -> int:
"""
Get the maximum number of input items allowed per prompt
for the given modality.
"""
return self.limit_per_prompt.get(
modality,
999 if envs.VLLM_USE_V1 else 1,
)
def merge_mm_processor_kwargs(
self,
inference_kwargs: Mapping[str, object],
) -> dict[str, object]:
"""
Get the keyword arguments to pass to the multi-modal processor
according to the extra arguments passed during inference.
"""
kwargs = self.mm_processor_kwargs or {}
return kwargs | dict(inference_kwargs)
@config
@dataclass
class PoolerConfig:
"""Controls the behavior of output pooling in pooling models."""
pooling_type: Optional[str] = None
"""
The pooling method of the pooling model. This should be a key in
[`vllm.model_executor.layers.pooler.PoolingType`][].
"""
## for embeddings models
normalize: Optional[bool] = None
"""
Whether to normalize the embeddings outputs. Defaults to True.
"""
dimensions: Optional[int] = None
"""
Reduce the dimensions of embeddings if model
support matryoshka representation. Defaults to None.
"""
enable_chunked_processing: Optional[bool] = None
"""
Whether to enable chunked processing for long inputs that exceed the model's
maximum position embeddings. When enabled, long inputs will be split into
chunks, processed separately, and then aggregated using weighted averaging.
This allows embedding models to handle arbitrarily long text without CUDA
errors. Defaults to False.
"""
max_embed_len: Optional[int] = None
"""
Maximum input length allowed for embedding generation. When set, allows
inputs longer than max_embed_len to be accepted for embedding models.
When an input exceeds max_embed_len, it will be handled according to
the original max_model_len validation logic.
Defaults to None (i.e. set to max_model_len).
"""
## for classification models
activation: Optional[bool] = None
"""
Whether to apply activation function to the classification outputs.
Defaults to True.
"""
logit_bias: Optional[float] = None
"""
If provided, apply classification logit biases. Defaults to None.
"""
## for reward models
softmax: Optional[bool] = None
"""
Whether to apply softmax to the reward outputs.
Defaults to True.
"""
step_tag_id: Optional[int] = None
"""
If set, only the score corresponding to the ``step_tag_id`` in the
generated sentence should be returned. Otherwise, the scores for all tokens
are returned.
"""
returned_token_ids: Optional[list[int]] = None
"""
A list of indices for the vocabulary dimensions to be extracted,
such as the token IDs of ``good_token`` and ``bad_token`` in the
``math-shepherd-mistral-7b-prm`` model.
"""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.float16,
"float16": torch.float16,
"float": torch.float32,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
# model_type -> reason
_FLOAT16_NOT_SUPPORTED_MODELS = {
"gemma2": "Numerical instability. Please use bfloat16 or float32 instead.",
"gemma3": "Numerical instability. Please use bfloat16 or float32 instead.",
"gemma3_text":
"Numerical instability. Please use bfloat16 or float32 instead.",
"plamo2": "Numerical instability. Please use bfloat16 or float32 instead.",
"glm4": "Numerical instability. Please use bfloat16 or float32 instead.",
}
def _is_valid_dtype(model_type: str, dtype: torch.dtype):
if model_type in _FLOAT16_NOT_SUPPORTED_MODELS and dtype == torch.float16: # noqa: E501, SIM103
return False
return True
def _check_valid_dtype(model_type: str, dtype: torch.dtype):
if model_type in _FLOAT16_NOT_SUPPORTED_MODELS and dtype == torch.float16:
reason = _FLOAT16_NOT_SUPPORTED_MODELS[model_type]
raise ValueError(f"The model type {model_type!r} "
f"does not support float16. Reason: {reason}")
return True
def _find_dtype(
model_id: str,
config: PretrainedConfig,
*,
revision: Optional[str],
):
# NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
# because config.torch_dtype can be None.
config_dtype = getattr(config, "torch_dtype", None)
# Fallbacks for multi-modal models if the root config
# does not define torch_dtype
if config_dtype is None:
config_dtype = getattr(config.get_text_config(), "torch_dtype", None)
if config_dtype is None and hasattr(config, "vision_config"):
config_dtype = getattr(config.vision_config, "torch_dtype", None)
if config_dtype is None and hasattr(config, "encoder_config"):
config_dtype = getattr(config.encoder_config, "torch_dtype", None)
# Try to read the dtype of the weights if they are in safetensors format
if config_dtype is None:
repo_mt = try_get_safetensors_metadata(model_id, revision=revision)
if repo_mt and (files_mt := repo_mt.files_metadata):
param_dtypes: set[torch.dtype] = {
_SAFETENSORS_TO_TORCH_DTYPE[dtype_str]
for file_mt in files_mt.values()
for dtype_str in file_mt.parameter_count
if dtype_str in _SAFETENSORS_TO_TORCH_DTYPE
}
if param_dtypes:
return common_broadcastable_dtype(param_dtypes)
if config_dtype is None:
config_dtype = torch.float32
return config_dtype
def _resolve_auto_dtype(
model_type: str,
config_dtype: torch.dtype,
*,
is_pooling_model: bool,
):
from vllm.platforms import current_platform
supported_dtypes = [
dtype for dtype in current_platform.supported_dtypes
if _is_valid_dtype(model_type, dtype)
]
if is_pooling_model and torch.float16 in supported_dtypes:
preferred_dtype = torch.float16
else:
preferred_dtype = supported_dtypes[0]
# Downcast for float32 models
if config_dtype == torch.float32:
config_dtype = preferred_dtype
if config_dtype in supported_dtypes:
return config_dtype
# Ensure device compatibility
device_name = current_platform.get_device_name()
device_capability = current_platform.get_device_capability()
if device_capability is None:
device_str = f"{device_name!r}"
else:
version_str = device_capability.as_version_str()
device_str = f"{device_name!r} (with compute capability {version_str})"
logger.warning(
"Your device %s doesn't support %s. "
"Falling back to %s for compatibility.",
device_str,
config_dtype,
preferred_dtype,
)
return preferred_dtype
def _get_and_verify_dtype(
model_id: str,
config: PretrainedConfig,
dtype: Union[str, torch.dtype],
*,
is_pooling_model: bool,
revision: Optional[str] = None,
) -> torch.dtype:
config_dtype = _find_dtype(model_id, config, revision=revision)
model_type = config.model_type
if isinstance(dtype, str):
dtype = dtype.lower()
if dtype == "auto":
# Set default dtype from model config
torch_dtype = _resolve_auto_dtype(
model_type,
config_dtype,
is_pooling_model=is_pooling_model,
)
else:
if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
raise ValueError(f"Unknown dtype: {dtype!r}")
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
elif isinstance(dtype, torch.dtype):
torch_dtype = dtype
else:
raise ValueError(f"Unknown dtype: {dtype}")
_check_valid_dtype(model_type, torch_dtype)
if torch_dtype != config_dtype:
if torch_dtype == torch.float32:
# Upcasting to float32 is allowed.
logger.info("Upcasting %s to %s.", config_dtype, torch_dtype)
elif config_dtype == torch.float32:
# Downcasting from float32 to float16 or bfloat16 is allowed.
logger.info("Downcasting %s to %s.", config_dtype, torch_dtype)
else:
# Casting between float16 and bfloat16 is allowed with a warning.
logger.warning("Casting %s to %s.", config_dtype, torch_dtype)
return torch_dtype
def _get_and_verify_max_len(
hf_config: PretrainedConfig,
tokenizer_config: Optional[dict],
max_model_len: Optional[int],
disable_sliding_window: bool,
sliding_window: Optional[int],
spec_target_max_model_len: Optional[int] = None,
encoder_config: Optional[Any] = None,
) -> int:
"""Get and verify the model's maximum length."""
derived_max_model_len = float("inf")
possible_keys = [
# OPT
"max_position_embeddings",
# GPT-2
"n_positions",
# MPT
"max_seq_len",
# ChatGLM2
"seq_length",
# Command-R
"model_max_length",
# Whisper
"max_target_positions",
# Others
"max_sequence_length",
"max_seq_length",
"seq_len",
]
# Choose the smallest "max_length" from the possible keys
max_len_key = None
for key in possible_keys:
max_len = getattr(hf_config, key, None)
if max_len is not None:
max_len_key = key if max_len < derived_max_model_len \
else max_len_key
derived_max_model_len = min(derived_max_model_len, max_len)
# For Command-R / Cohere, Cohere2 / Aya Vision models
if tmp_max_len := getattr(hf_config, "model_max_length", None):
max_len_key = "model_max_length"
derived_max_model_len = tmp_max_len
# If sliding window is manually disabled, max_length should be less
# than the sliding window length in the model config.
if (disable_sliding_window and sliding_window is not None
and sliding_window < derived_max_model_len):
max_len_key = "sliding_window"
derived_max_model_len = sliding_window
# Consider model_max_length in tokenizer_config
if tokenizer_config:
tokenizer_model_max_length = tokenizer_config.get(
"model_max_length", derived_max_model_len)
derived_max_model_len = min(derived_max_model_len,
tokenizer_model_max_length)
# If none of the keys were found in the config, use a default and
# log a warning.
if derived_max_model_len == float("inf"):
if max_model_len is not None:
# If max_model_len is specified, we use it.
return max_model_len
if spec_target_max_model_len is not None:
# If this is a speculative draft model, we use the max model len
# from the target model.
return spec_target_max_model_len
default_max_len = 2048
logger.warning(
"The model's config.json does not contain any of the following "
"keys to determine the original maximum length of the model: "
"%s. Assuming the model's maximum length is %d.", possible_keys,
default_max_len)
derived_max_model_len = default_max_len
rope_scaling = getattr(hf_config, "rope_scaling", None)
# NOTE(woosuk): Gemma3's max_model_len (128K) is already scaled by RoPE
# scaling, so we skip applying the scaling factor again.
if rope_scaling is not None and "gemma3" not in hf_config.model_type:
# No need to consider "type" key because of patch_rope_scaling when
# loading HF config
rope_type = rope_scaling["rope_type"]
if rope_type not in ("su", "longrope", "llama3"):
if disable_sliding_window:
# TODO(robertgshaw): Find a model that supports rope_scaling
# with sliding window to see if this case should be allowed.
raise NotImplementedError(
"Disabling sliding window is not supported for models "
"with rope_scaling. Please raise an issue so we can "
"investigate.")
# NOTE: rope_type == "default" does not define factor
# https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/modeling_rope_utils.py
scaling_factor = rope_scaling.get("factor", 1.0)
if rope_type == "yarn":
derived_max_model_len = rope_scaling[
"original_max_position_embeddings"]
derived_max_model_len *= scaling_factor
if encoder_config and "max_seq_length" in encoder_config:
derived_max_model_len = encoder_config["max_seq_length"]
# If the user specified a max length, make sure it is smaller than the
# derived length from the HF model config.
if max_model_len is None:
max_model_len = int(derived_max_model_len)
if current_platform.is_tpu():
logger.warning(
"--max-model-len is not specified, "
"it's currently using model's default length %s, "
"which might be too large."
"Please input with --max-model-len based on your "
"request input length and output length, to avoid "
"unnecessary degradation.", max_model_len)
elif max_model_len > derived_max_model_len:
# Some models might have a separate key for specifying model_max_length
# that will be bigger than derived_max_model_len. We compare user input
# with model_max_length and allow this override when it's smaller.
model_max_length = getattr(hf_config, "model_max_length", None)
if model_max_length is not None and max_model_len <= model_max_length:
if disable_sliding_window:
# TODO(robertgshaw): Find a model that has model_max_length
# with sliding window to see if this case should be allowed.
raise NotImplementedError(
"Disabling sliding window is not supported for models "
"model_max_length in the config. Please raise an issue "
"so we can investigate.")
else:
msg = (
f"User-specified max_model_len ({max_model_len}) is greater "
f"than the derived max_model_len ({max_len_key}="
f"{derived_max_model_len} or model_max_length="
f"{model_max_length} in model's config.json).")
warning = (
"VLLM_ALLOW_LONG_MAX_MODEL_LEN must be used with extreme "
"caution. If the model uses relative position encoding (RoPE), "
"positions exceeding derived_max_model_len lead to nan. If the "
"model uses absolute position encoding, positions exceeding "
"derived_max_model_len will cause a CUDA array out-of-bounds "
"error.")
if envs.VLLM_ALLOW_LONG_MAX_MODEL_LEN:
logger.warning_once("%s %s", msg, warning)
else:
raise ValueError(
f"{msg} To allow overriding this maximum, set "
f"the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN=1. {warning}")
return int(max_model_len)
def get_served_model_name(model: str,
served_model_name: Optional[Union[str, list[str]]]):
"""
If the input is a non-empty list, the first model_name in
`served_model_name` is taken.
If the input is a non-empty string, it is used directly.
For cases where the input is either an empty string or an
empty list, the fallback is to use `self.model`.
"""
if not served_model_name:
return model
if isinstance(served_model_name, list):
return served_model_name[0]
return served_model_name
GuidedDecodingBackend = Literal["auto", "xgrammar", "guidance", "outlines",
"lm-format-enforcer"]
@config
@dataclass
class DecodingConfig:
"""Dataclass which contains the decoding strategy of the engine."""
backend: GuidedDecodingBackend = "auto"
"""Which engine will be used for guided decoding (JSON schema / regex etc)
by default. With "auto", we will make opinionated choices based on request
contents and what the backend libraries currently support, so the behavior
is subject to change in each release."""
disable_fallback: bool = False
"""If `True`, vLLM will not fallback to a different backend on error."""
disable_any_whitespace: bool = False
"""If `True`, the model will not generate any whitespace during guided
decoding. This is only supported for xgrammar and guidance backends."""
disable_additional_properties: bool = False
"""If `True`, the `guidance` backend will not use `additionalProperties`
in the JSON schema. This is only supported for the `guidance` backend and
is used to better align its behaviour with `outlines` and `xgrammar`."""
reasoning_backend: str = ""
"""Select the reasoning parser depending on the model that you're using.
This is used to parse the reasoning content into OpenAI API format."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
if (self.disable_any_whitespace
and self.backend not in ("xgrammar", "guidance")):
raise ValueError("disable_any_whitespace is only supported for "
"xgrammar and guidance backends.")
if (self.disable_additional_properties and self.backend != "guidance"):
raise ValueError("disable_additional_properties is only supported "
"for the guidance backend.")
DetailedTraceModules = Literal["model", "worker", "all"]
@config
@dataclass
class ObservabilityConfig:
"""Configuration for observability - metrics and tracing."""
show_hidden_metrics_for_version: Optional[str] = None
"""Enable deprecated Prometheus metrics that have been hidden since the
specified version. For example, if a previously deprecated metric has been
hidden since the v0.7.0 release, you use
`--show-hidden-metrics-for-version=0.7` as a temporary escape hatch while
you migrate to new metrics. The metric is likely to be removed completely
in an upcoming release."""
@cached_property
def show_hidden_metrics(self) -> bool:
"""Check if the hidden metrics should be shown."""
if self.show_hidden_metrics_for_version is None:
return False
return version._prev_minor_version_was(
self.show_hidden_metrics_for_version)
otlp_traces_endpoint: Optional[str] = None
"""Target URL to which OpenTelemetry traces will be sent."""
collect_detailed_traces: Optional[list[DetailedTraceModules]] = None
"""It makes sense to set this only if `--otlp-traces-endpoint` is set. If
set, it will collect detailed traces for the specified modules. This
involves use of possibly costly and or blocking operations and hence might
have a performance impact.
Note that collecting detailed timing information for each request can be
expensive."""
@cached_property
def collect_model_forward_time(self) -> bool:
"""Whether to collect model forward time for the request."""
return (self.collect_detailed_traces is not None
and ("model" in self.collect_detailed_traces
or "all" in self.collect_detailed_traces))
@cached_property
def collect_model_execute_time(self) -> bool:
"""Whether to collect model execute time for the request."""
return (self.collect_detailed_traces is not None
and ("worker" in self.collect_detailed_traces
or "all" in self.collect_detailed_traces))
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
if (self.collect_detailed_traces is not None
and len(self.collect_detailed_traces) == 1
and "," in self.collect_detailed_traces[0]):
self._parse_collect_detailed_traces()
from vllm.tracing import is_otel_available, otel_import_error_traceback
if not is_otel_available() and self.otlp_traces_endpoint is not None:
raise ValueError(
"OpenTelemetry is not available. Unable to configure "
"'otlp_traces_endpoint'. Ensure OpenTelemetry packages are "
f"installed. Original error:\n{otel_import_error_traceback}")
def _parse_collect_detailed_traces(self):
assert isinstance(self.collect_detailed_traces, list)
self.collect_detailed_traces = cast(
list[DetailedTraceModules],
self.collect_detailed_traces[0].split(","))
KVProducer = Literal["kv_producer", "kv_both"]
KVConsumer = Literal["kv_consumer", "kv_both"]
KVRole = Literal[KVProducer, KVConsumer]
@config
@dataclass
class KVTransferConfig:
"""Configuration for distributed KV cache transfer."""
kv_connector: Optional[str] = None
"""The KV connector for vLLM to transmit KV caches between vLLM instances.
"""
engine_id: Optional[str] = None
"""The engine id for KV transfers."""
kv_buffer_device: Optional[str] = "cuda"
"""The device used by kv connector to buffer the KV cache.
Currently only support 'cuda'."""
kv_buffer_size: float = 1e9
"""The buffer size for TorchDistributedConnector. Measured in number of
bytes. Recommended value: 1e9 (about 1GB)."""
kv_role: Optional[KVRole] = None
"""Whether this vLLM instance produces, consumes KV cache, or both. Choices
are 'kv_producer', 'kv_consumer', and 'kv_both'."""
kv_rank: Optional[int] = None
"""The rank of this vLLM instance in the KV cache transfer. Typical value:
0 for prefill instance, 1 for decode instance.
Currently only 1P1D is supported."""
kv_parallel_size: int = 1
"""The number of parallel instances for KV cache transfer. For
P2pNcclConnector, this should be 2."""
kv_ip: str = "127.0.0.1"
"""The KV connector ip, used to build distributed connection."""
kv_port: int = 14579
"""The KV connector port, used to build distributed connection."""
kv_connector_extra_config: dict[str, Any] = field(default_factory=dict)
"""any extra config that the connector may need."""
kv_connector_module_path: Optional[str] = None
"""The Python module path to dynamically load the KV connector from.
Only supported in V1."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self) -> None:
if self.engine_id is None:
self.engine_id = str(uuid.uuid4())
if self.kv_role is not None and self.kv_role not in get_args(KVRole):
raise ValueError(f"Unsupported kv_role: {self.kv_role}. "
f"Supported roles are {get_args(KVRole)}")
if self.kv_connector is not None and self.kv_role is None:
raise ValueError("Please specify kv_disagg_role when kv_connector "
f"is set, supported roles are {get_args(KVRole)}")
@property
def is_kv_transfer_instance(self) -> bool:
return self.kv_connector is not None and \
self.kv_role in get_args(KVRole)
@property
def is_kv_producer(self) -> bool:
return self.kv_connector is not None and \
self.kv_role in get_args(KVProducer)
@property
def is_kv_consumer(self) -> bool:
return self.kv_connector is not None and \
self.kv_role in get_args(KVConsumer)
def get_from_extra_config(self, key, default) -> Any:
return self.kv_connector_extra_config.get(key, default)
@config
@dataclass
class KVEventsConfig:
"""Configuration for KV event publishing."""
enable_kv_cache_events: bool = False
"""If True, enable KV cache events for tracking block storage and removal.
Events can be published externally by zmq using the event publisher config.
"""
publisher: str = "null"
"""The publisher to use for publishing kv events. Can be "null", "zmq".
"""
endpoint: str = "tcp://*:5557"
"""The zmq endpoint to use for publishing kv events.
"""
replay_endpoint: Optional[str] = None
"""The zmq endpoint to use for replaying kv events.
"""
buffer_steps: int = 10_000
"""The number of steps to cache for replay endpoint. Will only save
events from the last N steps for the replay endpoint.
"""
hwm: int = 100_000
"""The zmq high water mark for the event publisher. After queueing N events,
events will start dropping if the consumer is not keeping up.
"""
max_queue_size: int = 100_000
"""The maximum number of events to queue while waiting for publishing.
"""
topic: str = ""
"""The topic to use for the event publisher. Consumers can subscribe to
this topic to receive events.
"""
@config
@dataclass(config=ConfigDict(arbitrary_types_allowed=True))
class VllmConfig:
"""Dataclass which contains all vllm-related configuration. This
simplifies passing around the distinct configurations in the codebase.
"""
# TODO: use default_factory once default constructing ModelConfig doesn't
# try to download a model
model_config: ModelConfig = None # type: ignore
"""Model configuration."""
cache_config: CacheConfig = field(default_factory=CacheConfig)
"""Cache configuration."""
parallel_config: ParallelConfig = field(default_factory=ParallelConfig)
"""Parallel configuration."""
scheduler_config: SchedulerConfig = field(default_factory=SchedulerConfig)
"""Scheduler configuration."""
device_config: DeviceConfig = field(default_factory=DeviceConfig)
"""Device configuration."""
load_config: LoadConfig = field(default_factory=LoadConfig)
"""Load configuration."""
lora_config: Optional[LoRAConfig] = None
"""LoRA configuration."""
speculative_config: Optional[SpeculativeConfig] = None
"""Speculative decoding configuration."""
decoding_config: DecodingConfig = field(default_factory=DecodingConfig)
"""Decoding configuration."""
observability_config: Optional[ObservabilityConfig] = None
"""Observability configuration."""
quant_config: Optional[QuantizationConfig] = None
"""Quantization configuration."""
compilation_config: CompilationConfig = field(
default_factory=CompilationConfig)
"""`torch.compile` and cudagraph capture configuration for the model.
As a shorthand, `-O<n>` can be used to directly specify the compilation
level `n`: `-O3` is equivalent to `-O.level=3` (same as `-O='{"level":3}'`).
Currently, -O <n> and -O=<n> are supported as well but this will likely be
removed in favor of clearer -O<n> syntax in the future.
NOTE: level 0 is the default level without any optimization. level 1 and 2
are for internal testing only. level 3 is the recommended level for
production, also default in V1.
You can specify the full compilation config like so:
`{"level": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}`
"""
kv_transfer_config: Optional[KVTransferConfig] = None
"""The configurations for distributed KV cache transfer."""
kv_events_config: Optional[KVEventsConfig] = None
"""The configurations for event publishing."""
# some opaque config, only used to provide additional information
# for the hash computation, mainly used for testing, debugging or out of
# tree config registration.
additional_config: Union[dict, SupportsHash] = field(default_factory=dict)
"""Additional config for specified platform. Different platforms may
support different configs. Make sure the configs are valid for the platform
you are using. Contents must be hashable."""
instance_id: str = ""
"""The ID of the vLLM instance."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
# summarize vllm config
vllm_factors: list[Any] = []
from vllm import __version__
vllm_factors.append(__version__)
vllm_factors.append(envs.VLLM_USE_V1)
if self.model_config:
vllm_factors.append(self.model_config.compute_hash())
else:
vllm_factors.append("None")
if self.cache_config:
vllm_factors.append(self.cache_config.compute_hash())
else:
vllm_factors.append("None")
if self.parallel_config:
vllm_factors.append(self.parallel_config.compute_hash())
else:
vllm_factors.append("None")
if self.scheduler_config:
vllm_factors.append(self.scheduler_config.compute_hash())
else:
vllm_factors.append("None")
if self.device_config:
vllm_factors.append(self.device_config.compute_hash())
else:
vllm_factors.append("None")
if self.load_config:
vllm_factors.append(self.load_config.compute_hash())
else:
vllm_factors.append("None")
if self.lora_config:
vllm_factors.append(self.lora_config.compute_hash())
# LoRA creates static buffers based on max_num_batched_tokens.
# The tensor sizes and strides get captured in the torch.compile
# graph explicitly.
vllm_factors.append(
str(self.scheduler_config.max_num_batched_tokens))
else:
vllm_factors.append("None")
if self.speculative_config:
vllm_factors.append(self.speculative_config.compute_hash())
else:
vllm_factors.append("None")
if self.decoding_config:
vllm_factors.append(self.decoding_config.compute_hash())
else:
vllm_factors.append("None")
if self.observability_config:
vllm_factors.append(self.observability_config.compute_hash())
else:
vllm_factors.append("None")
if self.quant_config:
pass # should be captured by model_config.quantization
if self.compilation_config:
vllm_factors.append(self.compilation_config.compute_hash())
else:
vllm_factors.append("None")
if self.kv_transfer_config:
vllm_factors.append(self.kv_transfer_config.compute_hash())
else:
vllm_factors.append("None")
if self.additional_config:
if isinstance(additional_config := self.additional_config, dict):
additional_config_hash = hashlib.md5(
json.dumps(additional_config, sort_keys=True).encode(),
usedforsecurity=False,
).hexdigest()
else:
additional_config_hash = additional_config.compute_hash()
vllm_factors.append(additional_config_hash)
else:
vllm_factors.append("None")
factors.append(vllm_factors)
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()[:10]
return hash_str
def pad_for_cudagraph(self, batch_size: int) -> int:
# if batch_size > self.compilation_config.max_capture_size,
# it should raise an IndexError.
# the caller should make sure the batch_size is within the range,
# i.e., batch_size <= self.compilation_config.max_capture_size
return self.compilation_config.bs_to_padded_graph_size[batch_size]
@staticmethod
def _get_quantization_config(
model_config: ModelConfig,
load_config: LoadConfig) -> Optional[QuantizationConfig]:
"""Get the quantization config."""
from vllm.platforms import current_platform
if model_config.quantization is not None:
from vllm.model_executor.model_loader.weight_utils import (
get_quant_config)
quant_config = get_quant_config(model_config, load_config)
capability_tuple = current_platform.get_device_capability()
if capability_tuple is not None:
capability = capability_tuple.to_int()
if capability < quant_config.get_min_capability():
raise ValueError(
f"The quantization method {model_config.quantization} "
"is not supported for the current GPU. Minimum "
f"capability: {quant_config.get_min_capability()}. "
f"Current capability: {capability}.")
supported_dtypes = quant_config.get_supported_act_dtypes()
if model_config.dtype not in supported_dtypes:
raise ValueError(
f"{model_config.dtype} is not supported for quantization "
f"method {model_config.quantization}. Supported dtypes: "
f"{supported_dtypes}")
return quant_config
return None
@staticmethod
def get_quantization_config(
model_config: ModelConfig,
load_config: LoadConfig) -> Optional[QuantizationConfig]:
import copy
# For some reason, the _ version of this modifies the model_config
# object, so using deepcopy to avoid this problem.
return VllmConfig._get_quantization_config(copy.deepcopy(model_config),
load_config)
def with_hf_config(
self,
hf_config: PretrainedConfig,
architectures: Optional[list[str]] = None,
) -> "VllmConfig":
if architectures is not None:
hf_config = copy.deepcopy(hf_config)
hf_config.architectures = architectures
model_config = copy.deepcopy(self.model_config)
model_config.hf_config = hf_config
return replace(self, model_config=model_config)
def __post_init__(self):
"""Verify configs are valid & consistent with each other.
"""
self.try_verify_and_update_config()
if self.model_config is not None:
self.model_config.verify_async_output_proc(self.parallel_config,
self.speculative_config,
self.device_config)
self.model_config.verify_with_parallel_config(self.parallel_config)
self.model_config.verify_dual_chunk_attention_config(
self.load_config)
self.cache_config.verify_with_parallel_config(self.parallel_config)
if self.lora_config is not None:
self.lora_config.verify_with_cache_config(self.cache_config)
self.lora_config.verify_with_model_config(self.model_config)
if self.quant_config is None and self.model_config is not None:
self.quant_config = VllmConfig._get_quantization_config(
self.model_config, self.load_config)
from vllm.platforms import current_platform
if self.model_config is not None and \
self.scheduler_config.chunked_prefill_enabled and \
self.model_config.dtype == torch.float32 and \
current_platform.get_device_capability() == (7, 5):
logger.warning_once(
"Turing devices tensor cores do not support float32 matmul. "
"To workaround this limitation, vLLM will set 'ieee' input "
"precision for chunked prefill triton kernels.")
# If the user does not explicitly set a compilation level, then
# we use the default level. The default level depends on other
# settings (see the below code).
if self.compilation_config.level is None:
if envs.VLLM_USE_V1:
if (self.model_config is not None
and not self.model_config.enforce_eager):
self.compilation_config.level = CompilationLevel.PIECEWISE
else:
self.compilation_config.level = \
CompilationLevel.NO_COMPILATION
else:
# NB: Passing both --enforce-eager and a compilation level
# in V0 means the compilation level wins out.
self.compilation_config.level = CompilationLevel.NO_COMPILATION
# async tp is built on top of sequence parallelism
# and requires it to be enabled.
if self.compilation_config.pass_config.enable_async_tp:
self.compilation_config.pass_config.enable_sequence_parallelism = \
True
if self.compilation_config.pass_config.enable_sequence_parallelism:
self.compilation_config.custom_ops.append("+rms_norm")
if current_platform.is_cuda_alike() or current_platform.is_xpu():
# if cudagraph_mode is not explicitly set by users, set default
# value
if self.compilation_config.cudagraph_mode is None:
if envs.VLLM_USE_V1 and self.compilation_config.level \
== CompilationLevel.PIECEWISE:
self.compilation_config.cudagraph_mode = \
CUDAGraphMode.PIECEWISE
else:
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
# disable cudagraph when enforce eager execution
if self.model_config is not None and \
self.model_config.enforce_eager:
logger.info("Cudagraph is disabled under eager mode")
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
elif envs.VLLM_USE_V1:
self.compilation_config.cudagraph_num_of_warmups = 1
self._set_cudagraph_sizes()
else:
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
if self.cache_config.cpu_offload_gb > 0 and \
self.compilation_config.level != CompilationLevel.NO_COMPILATION \
and not envs.VLLM_USE_V1:
logger.warning(
"CPU offload is not supported with `torch.compile` in v0 yet."
" Disabling `torch.compile`.")
self.compilation_config.level = CompilationLevel.NO_COMPILATION
if self.cache_config.kv_sharing_fast_prefill:
if not envs.VLLM_USE_V1:
raise NotImplementedError(
"Fast prefill optimization for KV sharing is not supported "
"in V0 currently.")
if self.speculative_config is not None and \
self.speculative_config.use_eagle():
raise NotImplementedError(
"Fast prefill optimization for KV sharing is not "
"compatible with EAGLE as EAGLE requires correct logits "
"for all tokens while fast prefill gives incorrect logits "
"for prompt tokens.")
logger.warning_once(
"--kv-sharing-fast-prefill requires changes on model side for "
"correctness and to realize prefill savings. ")
if ((not envs.VLLM_USE_V1) and self.lora_config is not None
and self.compilation_config.level
!= CompilationLevel.NO_COMPILATION):
logger.warning(
"LoRA for V0 is not supported with `torch.compile` yet. "
"Disabling `torch.compile`.")
self.compilation_config.level = CompilationLevel.NO_COMPILATION
disable_chunked_prefill_reasons: list[str] = []
if self.model_config and self.model_config.pooler_config:
pooling_type = self.model_config.pooler_config.pooling_type
if pooling_type is None or pooling_type.lower() != "last":
disable_chunked_prefill_reasons.append(
"Only \"last\" pooling supports chunked "
"prefill and prefix caching; disabling both.")
elif not getattr(self.model_config.hf_config, "is_causal", True):
disable_chunked_prefill_reasons.append(
"Only models using causal attention supports chunked "
"prefill and prefix caching; disabling both.")
if disable_chunked_prefill_reasons:
for reason in disable_chunked_prefill_reasons:
logger.info(reason)
self.scheduler_config.chunked_prefill_enabled = False
self.scheduler_config.long_prefill_token_threshold = 0
if self.cache_config is not None:
self.cache_config.enable_prefix_caching = False
if (self.kv_events_config is not None
and self.kv_events_config.enable_kv_cache_events
and not self.cache_config.enable_prefix_caching):
logger.warning(
"KV cache events are on, but prefix caching is not enabled."
"Use --enable-prefix-caching to enable.")
if (self.kv_events_config is not None
and self.kv_events_config.publisher != "null"
and not self.kv_events_config.enable_kv_cache_events):
logger.warning("KV cache events are disabled,"
"but the scheduler is configured to publish them."
"Modify KVEventsConfig.enable_kv_cache_events"
"to True to enable.")
current_platform.check_and_update_config(self)
# final check of cudagraph mode after platform-specific update
if envs.VLLM_USE_V1 and current_platform.is_cuda_alike():
if self.compilation_config.cudagraph_mode == CUDAGraphMode.FULL \
and self.model_config is not None and \
not self.model_config.disable_cascade_attn:
logger.info("CUDAGraphMode.FULL is not supported with "
"cascade attention currently. Disabling cascade"
"attention.")
self.model_config.disable_cascade_attn = True
if self.compilation_config.cudagraph_mode\
.requires_piecewise_compilation():
assert self.compilation_config.level == \
CompilationLevel.PIECEWISE, \
"Compilation level should be CompilationLevel.PIECEWISE "\
"when cudagraph_mode piecewise cudagraphs is used, "\
f"cudagraph_mode={self.compilation_config.cudagraph_mode}"
if not self.instance_id:
self.instance_id = random_uuid()[:5]
# Do this after all the updates to compilation_config.level
if envs.VLLM_USE_V1 and \
self.compilation_config.level == CompilationLevel.PIECEWISE:
self.compilation_config.set_splitting_ops_for_v1()
if (envs.VLLM_USE_V1
and not self.scheduler_config.disable_hybrid_kv_cache_manager):
# logger should only print warning message for hybrid models. As we
# can't know whether the model is hybrid or not now, so we don't log
# warning message here and will log it later.
if not (current_platform.is_cuda() or current_platform.is_rocm()):
# Hybrid KV cache manager is not supported on non-GPU platforms.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
if self.kv_transfer_config is not None:
# Hybrid KV cache manager is not compatible with KV transfer.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
if self.kv_events_config is not None:
# Hybrid KV cache manager is not compatible with KV events.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
if self.model_config is not None and \
self.model_config.attention_chunk_size is not None:
if self.speculative_config is not None and \
self.speculative_config.use_eagle():
# Hybrid KV cache manager is not yet supported with chunked
# local attention + eagle.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
elif \
not envs.VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE:
logger.warning(
"There is a latency regression when using chunked local"
" attention with the hybrid KV cache manager. Disabling"
" it, by default. To enable it, set the environment "
"VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE=1."
)
# Hybrid KV cache manager is not yet supported with chunked
# local attention.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
def update_sizes_for_sequence_parallelism(self,
possible_sizes: list) -> list:
# remove the sizes that not multiple of tp_size when
# enable sequence parallelism
removed_sizes = [
size for size in possible_sizes
if size % self.parallel_config.tensor_parallel_size != 0
]
if removed_sizes:
logger.warning(
"Batch sizes %s are removed because they are not "
"multiple of tp_size %d when "
"sequence parallelism is enabled", removed_sizes,
self.parallel_config.tensor_parallel_size)
return [
size for size in possible_sizes
if size % self.parallel_config.tensor_parallel_size == 0
]
def _set_cudagraph_sizes(self):
"""
cudagraph batchsize padding logic:
`[1, 2, 4] + [8 * i for i in range(1, 1025)]` is a list of all possible
batch sizes that cudagraph will capture.
Depending on the engine's configuration of `max_num_seqs`, the
candidate batch sizes to capture cudagraph will shrink to the subset
which just cover the range of `[1, max_num_seqs]`. In the common case,
`max_num_seqs` is 256, and the cudagraph batch sizes will be
`[1, 2, 4, 8, 16, 24, 32, 40, ..., 256]`.
However, if users specify the cudagraph capture sizes through
compilation config, we will use the specified sizes instead.
In the end, `vllm_config.compilation_config.cudagraph_capture_sizes`
will be the final sizes to capture cudagraph (in descending order).
During runtime, if batchsize is larger than
`vllm_config.compilation_config.cudagraph_capture_sizes`,
no cudagraph will be used.
If the batch size is no larger than
`vllm_config.compilation_config.cudagraph_capture_sizes`,
we can quickly find the padded graph size for a given batch size by
looking up `vllm_config.compilation_config.bs_to_padded_graph_size`.
"""
# calculate the default `batch_size_capture_list`
if not envs.VLLM_USE_V1:
batch_size_capture_list = []
if self.scheduler_config is not None and \
self.model_config is not None and \
not self.model_config.enforce_eager:
possible_sizes = [1, 2, 4] + [8 * i for i in range(1, 1025)]
if self.parallel_config.tensor_parallel_size > 1 and \
self.compilation_config.pass_config.enable_sequence_parallelism:
possible_sizes = self.update_sizes_for_sequence_parallelism(
possible_sizes)
# find the minimum size that is larger than max_num_seqs,
# which then becomes the max_batchsize_to_capture
larger_sizes = [
x for x in possible_sizes
if x >= self.scheduler_config.max_num_seqs
]
if larger_sizes:
max_batchsize_to_capture = larger_sizes[0]
else:
max_batchsize_to_capture = possible_sizes[-1]
# filter out the sizes that are
# larger than max_batchsize_to_capture
batch_size_capture_list = [
size for size in possible_sizes
if size <= max_batchsize_to_capture
]
else:
batch_size_capture_list = []
if self.model_config is not None and \
not self.model_config.enforce_eager:
cuda_graph_sizes = self.scheduler_config.cuda_graph_sizes
if len(cuda_graph_sizes) == 1:
batch_size_capture_list = [1, 2, 4] + [
i for i in range(8, cuda_graph_sizes[0] + 1, 8)
]
elif len(cuda_graph_sizes) > 1:
batch_size_capture_list = sorted(cuda_graph_sizes)
else:
raise TypeError(f"Invalid value for {cuda_graph_sizes=}.")
if self.parallel_config.tensor_parallel_size > 1 and \
self.compilation_config.pass_config.enable_sequence_parallelism:
batch_size_capture_list = \
self.update_sizes_for_sequence_parallelism(batch_size_capture_list)
max_num_tokens = self.scheduler_config.max_num_batched_tokens
batch_size_capture_list = [
size for size in batch_size_capture_list
if size <= max_num_tokens
]
self.compilation_config.init_with_cudagraph_sizes(
batch_size_capture_list)
def recalculate_max_model_len(self, max_model_len: int):
# Can only be called in try_verify_and_update_config
model_config = self.model_config
max_model_len = model_config.get_and_verify_max_len(max_model_len)
self.model_config.max_model_len = max_model_len
self.scheduler_config.max_model_len = max_model_len
def try_verify_and_update_config(self):
if self.model_config is None:
return
# Avoid running try_verify_and_update_config multiple times
if getattr(self.model_config, "config_updated", False):
return
self.model_config.config_updated = True
architecture = self.model_config.architecture
if architecture is None:
return
from vllm.model_executor.models.config import (
MODELS_CONFIG_MAP, HybridAttentionMambaModelConfig)
cls = MODELS_CONFIG_MAP.get(architecture, None)
if cls is not None:
cls.verify_and_update_config(self)
if self.model_config.is_hybrid:
HybridAttentionMambaModelConfig.verify_and_update_config(self)
if self.model_config.convert_type == "classify":
# Maybe convert ForCausalLM into ForSequenceClassification model.
from vllm.model_executor.models.adapters import (
SequenceClassificationConfig)
SequenceClassificationConfig.verify_and_update_config(self)
def __str__(self):
return (
f"model={self.model_config.model!r}, "
f"speculative_config={self.speculative_config!r}, "
f"tokenizer={self.model_config.tokenizer!r}, "
f"skip_tokenizer_init={self.model_config.skip_tokenizer_init}, "
f"tokenizer_mode={self.model_config.tokenizer_mode}, "
f"revision={self.model_config.revision}, "
f"tokenizer_revision={self.model_config.tokenizer_revision}, "
f"trust_remote_code={self.model_config.trust_remote_code}, "
f"dtype={self.model_config.dtype}, "
f"max_seq_len={self.model_config.max_model_len}, "
f"download_dir={self.load_config.download_dir!r}, "
f"load_format={self.load_config.load_format}, "
f"tensor_parallel_size={self.parallel_config.tensor_parallel_size}, " # noqa
f"pipeline_parallel_size={self.parallel_config.pipeline_parallel_size}, " # noqa
f"disable_custom_all_reduce={self.parallel_config.disable_custom_all_reduce}, " # noqa
f"quantization={self.model_config.quantization}, "
f"enforce_eager={self.model_config.enforce_eager}, "
f"kv_cache_dtype={self.cache_config.cache_dtype}, "
f"device_config={self.device_config.device}, "
f"decoding_config={self.decoding_config!r}, "
f"observability_config={self.observability_config!r}, "
f"seed={self.model_config.seed}, "
f"served_model_name={self.model_config.served_model_name}, "
f"enable_prefix_caching={self.cache_config.enable_prefix_caching}, "
f"chunked_prefill_enabled={self.scheduler_config.chunked_prefill_enabled}, " # noqa
f"use_async_output_proc={self.model_config.use_async_output_proc}, "
f"pooler_config={self.model_config.pooler_config!r}, "
f"compilation_config={self.compilation_config!r}")
_current_vllm_config: Optional[VllmConfig] = None
_current_prefix: Optional[str] = None
@contextmanager
def set_current_vllm_config(vllm_config: VllmConfig,
check_compile=False,
prefix: Optional[str] = None):
"""
Temporarily set the current vLLM config.
Used during model initialization.
We save the current vLLM config in a global variable,
so that all modules can access it, e.g. custom ops
can access the vLLM config to determine how to dispatch.
"""
global _current_vllm_config, _current_prefix
old_vllm_config = _current_vllm_config
old_prefix = _current_prefix
from vllm.compilation.counter import compilation_counter
num_models_seen = compilation_counter.num_models_seen
try:
_current_vllm_config = vllm_config
_current_prefix = prefix
yield
except Exception:
raise
else:
logger.debug("enabled custom ops: %s",
vllm_config.compilation_config.enabled_custom_ops)
logger.debug("disabled custom ops: %s",
vllm_config.compilation_config.disabled_custom_ops)
if check_compile and \
vllm_config.compilation_config.level == CompilationLevel.PIECEWISE \
and compilation_counter.num_models_seen == num_models_seen:
# If the model supports compilation,
# compilation_counter.num_models_seen should be increased
# by at least 1.
# If it is not increased, it means the model does not support
# compilation (does not have @support_torch_compile decorator).
logger.warning(
"`torch.compile` is turned on, but the model %s"
" does not support it. Please open an issue on GitHub"
" if you want it to be supported.",
vllm_config.model_config.model)
finally:
_current_vllm_config = old_vllm_config
_current_prefix = old_prefix
# Clear the compilation config cache when context changes
get_cached_compilation_config.cache_clear()
@lru_cache(maxsize=1)
def get_cached_compilation_config():
"""Cache config to avoid repeated calls to get_current_vllm_config()"""
return get_current_vllm_config().compilation_config
def get_current_vllm_config() -> VllmConfig:
if _current_vllm_config is None:
# in ci, usually when we test custom ops/modules directly,
# we don't set the vllm config. In that case, we set a default
# config.
logger.warning("Current vLLM config is not set.")
from vllm.config import VllmConfig
return VllmConfig()
return _current_vllm_config
def get_current_model_prefix() -> str:
"""
Get the prefix of the model that's currently being initialized.
"""
assert _current_prefix is not None, \
"Current model prefix is not set. "
return _current_prefix
def contains_object_print(text):
"""
Check if the text looks like a printed Python object, e.g.
contains any substring matching the pattern: "at 0xFFFFFFF>"
We match against 0x followed by 2-16 hex chars (there's
a max of 16 on a 64 bit system).
Args:
text (str): The text to check
Returns:
result (bool): `True` if a match is found, `False` otherwise.
"""
pattern = r'at 0x[a-fA-F0-9]{2,16}>'
match = re.search(pattern, text)
return match is not None
def assert_hashable(text):
if not contains_object_print(text):
return True
raise AssertionError(
f"vLLM tried to hash some configs that may have Python objects ids "
f"in them. This is a bug, please file an issue. "
f"Text being hashed: {text}")
T = TypeVar("T")
def get_layers_from_vllm_config(
vllm_config: VllmConfig,
layer_type: type[T],
layer_names: Optional[list[str]] = None) -> dict[str, T]:
"""
Get layers from the vLLM config.
Args:
vllm_config: The vLLM config.
layer_type: The type of the layer to get.
layer_names: The names of the layers to get. If None, return all layers.
"""
if layer_names is None:
layer_names = list(
vllm_config.compilation_config.static_forward_context.keys())
forward_context = vllm_config.compilation_config.static_forward_context
return {
layer_name: forward_context[layer_name]
for layer_name in layer_names
if isinstance(forward_context[layer_name], layer_type)
}
@config
@dataclass
class SpeechToTextConfig:
"""Configuration for speech-to-text models."""
sample_rate: float = 16_000
"""Sample rate (Hz) to resample input audio to. Most speech models expect
16kHz audio input. The input audio will be automatically resampled to this
rate before processing."""
max_audio_clip_s: int = 30
"""Maximum duration in seconds for a single audio clip without chunking.
Audio longer than this will be split into smaller chunks if
`allow_audio_chunking` evaluates to True, otherwise it will be rejected."""
overlap_chunk_second: int = 1
"""Overlap duration in seconds between consecutive audio chunks when
splitting long audio. This helps maintain context across chunk boundaries
and improves transcription quality at split points."""
min_energy_split_window_size: Optional[int] = 1600
"""Window size in samples for finding low-energy (quiet) regions to split
audio chunks. The algorithm looks for the quietest moment within this
window to minimize cutting through speech. Default 1600 samples ≈ 100ms
at 16kHz. If None, no chunking will be done."""
@property
def allow_audio_chunking(self) -> bool:
return self.min_energy_split_window_size is not None
def update_config(config: DataclassInstanceT,
overrides: dict[str, Any]) -> DataclassInstanceT:
processed_overrides = {}
for field_name, value in overrides.items():
assert hasattr(
config, field_name), f"{type(config)} has no field `{field_name}`"
current_value = getattr(config, field_name)
if is_dataclass(current_value) and not is_dataclass(value):
assert isinstance(value, dict), (
f"Overrides to {type(config)}.{field_name} must be a dict"
f" or {type(current_value)}, but got {type(value)}")
value = update_config(
current_value, # type: ignore[type-var]
value)
processed_overrides[field_name] = value
return replace(config, **processed_overrides)