mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
510 lines
20 KiB
Python
510 lines
20 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
import torch
|
|
from torch.nn import Parameter
|
|
|
|
import vllm.model_executor.layers.fused_moe # noqa
|
|
from vllm import _custom_ops as ops
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.fused_moe.layer import (
|
|
FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported)
|
|
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
|
UnquantizedLinearMethod,
|
|
set_weight_attrs)
|
|
from vllm.model_executor.layers.quantization.awq import (AWQConfig,
|
|
is_layer_skipped_awq)
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig, QuantizeMethodBase)
|
|
from vllm.model_executor.layers.quantization.moe_wna16 import MoeWNA16Config
|
|
from vllm.model_executor.layers.quantization.utils import replace_parameter
|
|
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
|
|
apply_awq_marlin_linear, awq_to_marlin_zero_points, check_marlin_supported,
|
|
check_marlin_supports_layer, marlin_make_empty_g_idx,
|
|
marlin_make_workspace, marlin_moe_permute_scales, marlin_permute_scales,
|
|
moe_awq_to_marlin_zero_points, verify_marlin_supported,
|
|
verify_marlin_supports_shape)
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
|
from vllm.model_executor.parameter import (GroupQuantScaleParameter,
|
|
PackedvLLMParameter)
|
|
from vllm.platforms import current_platform
|
|
from vllm.scalar_type import scalar_types
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class AWQMarlinConfig(QuantizationConfig):
|
|
"""Config class for AWQ Marlin"""
|
|
|
|
# num_bits -> type
|
|
TYPE_MAP = {
|
|
4: scalar_types.uint4,
|
|
8: scalar_types.uint8,
|
|
}
|
|
|
|
def __init__(self, weight_bits: int, group_size: int, zero_point: bool,
|
|
lm_head_quantized: bool,
|
|
modules_to_not_convert: Optional[List[str]],
|
|
full_config: Dict[str, Any]) -> None:
|
|
super().__init__()
|
|
self.pack_factor = 32 // weight_bits # packed into int32
|
|
self.group_size = group_size
|
|
self.zero_point = zero_point
|
|
self.lm_head_quantized = lm_head_quantized
|
|
self.weight_bits = weight_bits
|
|
self.modules_to_not_convert = modules_to_not_convert or []
|
|
self.full_config = full_config
|
|
|
|
if self.weight_bits not in self.TYPE_MAP:
|
|
raise ValueError(f"Unsupported num_bits = {self.weight_bits}. "
|
|
f"Supported num_bits = {self.TYPE_MAP.keys()}")
|
|
|
|
self.quant_type = self.TYPE_MAP[self.weight_bits]
|
|
|
|
verify_marlin_supported(self.quant_type,
|
|
group_size=self.group_size,
|
|
has_zp=self.zero_point)
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"AWQMarlinConfig(quant_type={self.quant_type}, "
|
|
f"group_size={self.group_size}, "
|
|
f"zero_point={self.zero_point}, "
|
|
f"lm_head_quantized={self.lm_head_quantized}, "
|
|
f"modules_to_not_convert={self.modules_to_not_convert})")
|
|
|
|
@classmethod
|
|
def get_name(cls) -> str:
|
|
return "awq_marlin"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
return [torch.half, torch.bfloat16]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 80
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> List[str]:
|
|
return ["quantize_config.json"]
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Dict[str, Any]) -> "AWQMarlinConfig":
|
|
weight_bits = cls.get_from_keys(config, ["bits"])
|
|
group_size = cls.get_from_keys(config, ["group_size"])
|
|
zero_point = cls.get_from_keys(config, ["zero_point"])
|
|
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
|
|
default=False)
|
|
modules_to_not_convert = cls.get_from_keys_or(
|
|
config, ["modules_to_not_convert"], None)
|
|
return cls(weight_bits, group_size, zero_point, lm_head_quantized,
|
|
modules_to_not_convert, config)
|
|
|
|
@classmethod
|
|
def override_quantization_method(cls, hf_quant_cfg,
|
|
user_quant) -> Optional[str]:
|
|
can_convert = cls.is_awq_marlin_compatible(hf_quant_cfg)
|
|
is_valid_user_quant = (user_quant is None or user_quant == "marlin"
|
|
or user_quant == "awq_marlin")
|
|
|
|
if can_convert and is_valid_user_quant:
|
|
msg = ("The model is convertible to {} during runtime."
|
|
" Using {} kernel.".format(cls.get_name(), cls.get_name()))
|
|
logger.info(msg)
|
|
return cls.get_name()
|
|
|
|
if can_convert and user_quant == "awq":
|
|
logger.info("Detected that the model can run with awq_marlin"
|
|
", however you specified quantization=awq explicitly,"
|
|
" so forcing awq. Use quantization=awq_marlin for"
|
|
" faster inference")
|
|
return None
|
|
|
|
def get_quant_method(self, layer: torch.nn.Module,
|
|
prefix: str) -> Optional["QuantizeMethodBase"]:
|
|
if (isinstance(layer, LinearBase) or
|
|
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
|
|
if is_layer_skipped_awq(prefix, self.modules_to_not_convert):
|
|
return UnquantizedLinearMethod()
|
|
# Check if the layer is supported by AWQMarlin.
|
|
if not check_marlin_supports_layer(layer, self.group_size):
|
|
logger.warning_once(
|
|
f"Layer '{prefix}' is not supported by AWQMarlin. "
|
|
"Falling back to unoptimized AWQ kernels.")
|
|
return AWQConfig.from_config(
|
|
self.full_config).get_quant_method(layer, prefix)
|
|
return AWQMarlinLinearMethod(self)
|
|
elif isinstance(layer, FusedMoE):
|
|
if layer.local_num_experts > 32:
|
|
# For MoEs with many experts the moe_wna16 kernel is faster
|
|
return MoeWNA16Config.from_config(
|
|
self.full_config).get_quant_method(layer, prefix)
|
|
else:
|
|
return AWQMoEMethod(self)
|
|
return None
|
|
|
|
@classmethod
|
|
def is_awq_marlin_compatible(cls, quant_config: Dict[str, Any]):
|
|
# Extract data from quant config.
|
|
quant_method = quant_config.get("quant_method", "").lower()
|
|
num_bits = quant_config.get("bits")
|
|
group_size = quant_config.get("group_size")
|
|
zero_point = quant_config.get("zero_point")
|
|
|
|
if not current_platform.is_cuda():
|
|
return False
|
|
|
|
if quant_method != "awq":
|
|
return False
|
|
|
|
# If we cannot find the info needed in the config, cannot convert.
|
|
if (num_bits is None or group_size is None or zero_point is None):
|
|
return False
|
|
|
|
if num_bits not in cls.TYPE_MAP:
|
|
return False
|
|
|
|
return check_marlin_supported(quant_type=cls.TYPE_MAP[num_bits],
|
|
group_size=group_size,
|
|
has_zp=zero_point)
|
|
|
|
|
|
class AWQMarlinLinearMethod(LinearMethodBase):
|
|
"""Linear method for AWQ Marlin.
|
|
|
|
Args:
|
|
quant_config: The AWQ Marlin quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: AWQMarlinConfig) -> None:
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: List[int],
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
) -> None:
|
|
del output_size
|
|
output_size_per_partition = sum(output_partition_sizes)
|
|
weight_loader = extra_weight_attrs.get("weight_loader")
|
|
|
|
# Normalize group_size
|
|
if self.quant_config.group_size != -1:
|
|
group_size = self.quant_config.group_size
|
|
else:
|
|
group_size = input_size
|
|
|
|
verify_marlin_supports_shape(
|
|
output_size_per_partition=output_size_per_partition,
|
|
input_size_per_partition=input_size_per_partition,
|
|
input_size=input_size,
|
|
group_size=group_size)
|
|
|
|
qweight = PackedvLLMParameter(
|
|
data=torch.empty(
|
|
input_size_per_partition,
|
|
output_size_per_partition // self.quant_config.pack_factor,
|
|
dtype=torch.int32,
|
|
),
|
|
input_dim=0,
|
|
output_dim=1,
|
|
packed_dim=1,
|
|
packed_factor=self.quant_config.pack_factor,
|
|
weight_loader=weight_loader)
|
|
|
|
num_groups = input_size_per_partition // group_size
|
|
|
|
qzeros = PackedvLLMParameter(
|
|
data=torch.empty(
|
|
num_groups,
|
|
output_size_per_partition // self.quant_config.pack_factor,
|
|
dtype=torch.int32,
|
|
),
|
|
input_dim=0,
|
|
output_dim=1,
|
|
packed_dim=1,
|
|
packed_factor=self.quant_config.pack_factor,
|
|
weight_loader=weight_loader)
|
|
|
|
scales = GroupQuantScaleParameter(data=torch.empty(
|
|
num_groups,
|
|
output_size_per_partition,
|
|
dtype=params_dtype,
|
|
),
|
|
input_dim=0,
|
|
output_dim=1,
|
|
weight_loader=weight_loader)
|
|
|
|
layer.register_parameter("qweight", qweight)
|
|
layer.register_parameter("qzeros", qzeros)
|
|
layer.register_parameter("scales", scales)
|
|
|
|
layer.input_size_per_partition = input_size_per_partition
|
|
layer.output_size_per_partition = output_size_per_partition
|
|
layer.num_groups = num_groups
|
|
|
|
# TODO: Update this docs
|
|
# Checkpoints are serialized in AutoAWQ format, which is different from the
|
|
# marlin format. This function is called after the weights are loaded.
|
|
# Here, we handle the repacking
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
device = layer.qweight.device
|
|
layer.qweight = torch.nn.Parameter(layer.qweight.data,
|
|
requires_grad=False)
|
|
layer.qzeros = torch.nn.Parameter(layer.qzeros.data,
|
|
requires_grad=False)
|
|
layer.scales = torch.nn.Parameter(layer.scales.data,
|
|
requires_grad=False)
|
|
|
|
# Allocate marlin workspace
|
|
layer.workspace = marlin_make_workspace(
|
|
layer.output_size_per_partition, device)
|
|
|
|
# Repack weights from AWQ format to marlin format.
|
|
marlin_qweight = ops.awq_marlin_repack(
|
|
layer.qweight,
|
|
size_k=layer.input_size_per_partition,
|
|
size_n=layer.output_size_per_partition,
|
|
num_bits=self.quant_config.quant_type.size_bits)
|
|
replace_parameter(layer, "qweight", marlin_qweight)
|
|
|
|
# Permute scales from AWQ format to marlin format.
|
|
marlin_scales = marlin_permute_scales(
|
|
layer.scales,
|
|
size_k=layer.input_size_per_partition,
|
|
size_n=layer.output_size_per_partition,
|
|
group_size=self.quant_config.group_size)
|
|
replace_parameter(layer, "scales", marlin_scales)
|
|
|
|
# Permute zero-points from AWQ format to marlin format.
|
|
marlin_zp = awq_to_marlin_zero_points(
|
|
layer.qzeros,
|
|
size_k=layer.num_groups,
|
|
size_n=layer.output_size_per_partition,
|
|
num_bits=self.quant_config.quant_type.size_bits)
|
|
replace_parameter(layer, "qzeros", marlin_zp)
|
|
|
|
# Not-used
|
|
layer.g_idx = marlin_make_empty_g_idx(device)
|
|
layer.g_idx_sort_indices = marlin_make_empty_g_idx(device)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
return apply_awq_marlin_linear(
|
|
input=x,
|
|
weight=layer.qweight,
|
|
weight_scale=layer.scales,
|
|
weight_zp=layer.qzeros,
|
|
g_idx=layer.g_idx,
|
|
g_idx_sort_indices=layer.g_idx_sort_indices,
|
|
workspace=layer.workspace,
|
|
quant_type=self.quant_config.quant_type,
|
|
output_size_per_partition=layer.output_size_per_partition,
|
|
input_size_per_partition=layer.input_size_per_partition,
|
|
bias=bias)
|
|
|
|
|
|
class AWQMoEMethod(FusedMoEMethodBase):
|
|
|
|
def __init__(self, quant_config: AWQMarlinConfig):
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(self, layer: torch.nn.Module, num_experts: int,
|
|
hidden_size: int, intermediate_size_per_partition: int,
|
|
params_dtype: torch.dtype, **extra_weight_attrs):
|
|
extra_weight_attrs.update({
|
|
"is_transposed":
|
|
True,
|
|
"quant_method":
|
|
FusedMoeWeightScaleSupported.GROUP.value,
|
|
})
|
|
|
|
w13_qweight = Parameter(
|
|
torch.empty(num_experts,
|
|
hidden_size,
|
|
2 * intermediate_size_per_partition //
|
|
self.quant_config.pack_factor,
|
|
dtype=torch.int32),
|
|
requires_grad=False)
|
|
layer.register_parameter("w13_qweight", w13_qweight)
|
|
set_weight_attrs(w13_qweight, extra_weight_attrs)
|
|
|
|
w2_qweight = Parameter(torch.empty(num_experts,
|
|
intermediate_size_per_partition,
|
|
hidden_size //
|
|
self.quant_config.pack_factor,
|
|
dtype=torch.int32),
|
|
requires_grad=False)
|
|
layer.register_parameter("w2_qweight", w2_qweight)
|
|
set_weight_attrs(w2_qweight, extra_weight_attrs)
|
|
|
|
num_groups_w13 = hidden_size // self.quant_config.group_size
|
|
num_groups_w2 = (intermediate_size_per_partition //
|
|
self.quant_config.group_size)
|
|
|
|
# WEIGHT_SCALES
|
|
# Allocate 2 scales for w1 and w3 respectively.
|
|
w13_scales = Parameter(torch.empty(num_experts,
|
|
num_groups_w13,
|
|
intermediate_size_per_partition * 2,
|
|
dtype=params_dtype),
|
|
requires_grad=False)
|
|
layer.register_parameter("w13_scales", w13_scales)
|
|
set_weight_attrs(w13_scales, extra_weight_attrs)
|
|
|
|
w2_scales = Parameter(torch.empty(num_experts,
|
|
num_groups_w2,
|
|
hidden_size,
|
|
dtype=params_dtype),
|
|
requires_grad=False)
|
|
layer.register_parameter("w2_scales", w2_scales)
|
|
set_weight_attrs(w2_scales, extra_weight_attrs)
|
|
|
|
# WEIGHT_ZERO_POINT
|
|
# Allocate 2 zero points for w1 and w3 respectively.
|
|
w13_qzeros = Parameter(
|
|
torch.empty(num_experts,
|
|
num_groups_w13,
|
|
2 * intermediate_size_per_partition //
|
|
self.quant_config.pack_factor,
|
|
dtype=torch.int32),
|
|
requires_grad=False)
|
|
layer.register_parameter("w13_qzeros", w13_qzeros)
|
|
set_weight_attrs(w13_qzeros, extra_weight_attrs)
|
|
|
|
w2_qzeros = Parameter(torch.empty(num_experts,
|
|
num_groups_w2,
|
|
hidden_size //
|
|
self.quant_config.pack_factor,
|
|
dtype=torch.int32),
|
|
requires_grad=False)
|
|
layer.register_parameter("w2_qzeros", w2_qzeros)
|
|
set_weight_attrs(w2_qzeros, extra_weight_attrs)
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
num_experts = layer.w13_qweight.shape[0]
|
|
device = layer.w13_qweight.device
|
|
|
|
layer.w13_g_idx_sort_indices = torch.nn.Parameter(
|
|
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
|
|
requires_grad=False,
|
|
)
|
|
layer.w2_g_idx_sort_indices = torch.nn.Parameter(
|
|
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
|
|
requires_grad=False,
|
|
)
|
|
|
|
marlin_w13_qweight = ops.awq_marlin_moe_repack(
|
|
layer.w13_qweight,
|
|
layer.w13_g_idx_sort_indices,
|
|
size_k=layer.w13_qweight.shape[1],
|
|
size_n=layer.w13_qweight.shape[2] * self.quant_config.pack_factor,
|
|
num_bits=self.quant_config.weight_bits,
|
|
)
|
|
replace_parameter(layer, "w13_qweight", marlin_w13_qweight)
|
|
|
|
marlin_w2_qweight = ops.awq_marlin_moe_repack(
|
|
layer.w2_qweight,
|
|
layer.w2_g_idx_sort_indices,
|
|
size_k=layer.w2_qweight.shape[1],
|
|
size_n=layer.w2_qweight.shape[2] * self.quant_config.pack_factor,
|
|
num_bits=self.quant_config.weight_bits,
|
|
)
|
|
replace_parameter(layer, "w2_qweight", marlin_w2_qweight)
|
|
|
|
# Why does this take the intermediate size for size_k?
|
|
marlin_w13_scales = marlin_moe_permute_scales(
|
|
s=layer.w13_scales,
|
|
size_k=layer.intermediate_size_per_partition,
|
|
size_n=layer.w13_scales.shape[2],
|
|
group_size=self.quant_config.group_size,
|
|
)
|
|
|
|
replace_parameter(layer, "w13_scales", marlin_w13_scales)
|
|
|
|
marlin_w2_scales = marlin_moe_permute_scales(
|
|
s=layer.w2_scales,
|
|
size_k=layer.intermediate_size_per_partition,
|
|
size_n=layer.w2_scales.shape[2],
|
|
group_size=self.quant_config.group_size,
|
|
)
|
|
replace_parameter(layer, "w2_scales", marlin_w2_scales)
|
|
|
|
marlin_w13_zp = moe_awq_to_marlin_zero_points(
|
|
layer.w13_qzeros,
|
|
size_k=layer.w13_qzeros.shape[1],
|
|
size_n=layer.w13_qzeros.shape[2] * self.quant_config.pack_factor,
|
|
num_bits=self.quant_config.weight_bits)
|
|
replace_parameter(layer, "w13_qzeros", marlin_w13_zp)
|
|
|
|
marlin_w2_zp = moe_awq_to_marlin_zero_points(
|
|
layer.w2_qzeros,
|
|
size_k=layer.w2_qzeros.shape[1],
|
|
size_n=layer.w2_qzeros.shape[2] * self.quant_config.pack_factor,
|
|
num_bits=self.quant_config.weight_bits)
|
|
replace_parameter(layer, "w2_qzeros", marlin_w2_zp)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
top_k: int,
|
|
renormalize: bool,
|
|
use_grouped_topk: bool = False,
|
|
topk_group: Optional[int] = None,
|
|
num_expert_group: Optional[int] = None,
|
|
global_num_experts: int = -1,
|
|
expert_map: Optional[torch.Tensor] = None,
|
|
custom_routing_function: Optional[Callable] = None,
|
|
scoring_func: str = "softmax",
|
|
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
apply_router_weight_on_input: bool = False,
|
|
activation: str = "silu",
|
|
) -> torch.Tensor:
|
|
assert activation == "silu", "Only SiLU activation is supported."
|
|
if expert_map is not None:
|
|
raise NotImplementedError(
|
|
"Expert Parallelism is not supported for "
|
|
"fused Marlin MoE method.")
|
|
if apply_router_weight_on_input:
|
|
raise NotImplementedError(
|
|
"Apply router weight on input is not supported for"
|
|
"fused Marlin MoE method.")
|
|
|
|
topk_weights, topk_ids = FusedMoE.select_experts(
|
|
hidden_states=x,
|
|
router_logits=router_logits,
|
|
use_grouped_topk=use_grouped_topk,
|
|
top_k=top_k,
|
|
renormalize=renormalize,
|
|
topk_group=topk_group,
|
|
num_expert_group=num_expert_group,
|
|
custom_routing_function=custom_routing_function,
|
|
scoring_func=scoring_func,
|
|
e_score_correction_bias=e_score_correction_bias)
|
|
|
|
return torch.ops.vllm.fused_marlin_moe(
|
|
x,
|
|
layer.w13_qweight,
|
|
layer.w2_qweight,
|
|
layer.w13_scales,
|
|
layer.w2_scales,
|
|
router_logits,
|
|
topk_weights,
|
|
topk_ids,
|
|
w1_zeros=layer.w13_qzeros,
|
|
w2_zeros=layer.w2_qzeros,
|
|
num_bits=self.quant_config.weight_bits,
|
|
)
|