Files
vllm/vllm/model_executor/layers/quantization/torchao.py
2025-09-10 23:53:24 -07:00

215 lines
7.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Optional
import torch
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
UnquantizedLinearMethod)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs
logger = init_logger(__name__)
def should_skip(prefix: str, skip_modules: list[str]) -> bool:
"""
Robust skipping logic:
should_skip("model.model.layers.1.q_proj",
["model.model.layers.1.q_proj"]) # True
should_skip("model.model.layers.10.o_proj", ["o_proj"]) -> True
should_skip("visual.model.layers.1.q_proj", ["visual"]) -> True
should_skip("model.model.layers.1.q_proj", ["layers.1"]) -> True
should_skip("model.model.layers.11.q_proj", ["layers.1"]) -> False
"""
for s in skip_modules:
if prefix == s:
return True
if f".{s}." in f".{prefix}.":
return True
return False
class TorchAOConfig(QuantizationConfig):
"""Config class for torchao."""
def __init__(self,
torchao_config,
skip_modules: Optional[list[str]] = None) -> None:
"""
# TorchAO quantization relies on tensor subclasses. In order,
# to enable proper caching this needs standalone compile
if is_torch_equal_or_newer("2.8.0.dev"):
os.environ["VLLM_TEST_STANDALONE_COMPILE"] = "1"
logger.info(
"Using TorchAO: Setting VLLM_TEST_STANDALONE_COMPILE=1")
# TODO: remove after the torch dependency is updated to 2.8
if is_torch_equal_or_newer(
"2.7.0") and not is_torch_equal_or_newer("2.8.0.dev"):
os.environ["VLLM_DISABLE_COMPILE_CACHE"] = "1"
logger.info("Using TorchAO: Setting VLLM_DISABLE_COMPILE_CACHE=1")
"""
super().__init__()
self.torchao_config = torchao_config
self.skip_modules = skip_modules or []
def __repr__(self) -> str:
return f"TorchAOConfig({self.torchao_config})"
def get_name(self) -> QuantizationMethods:
return "torchao"
def get_supported_act_dtypes(self) -> list[torch.dtype]:
return [torch.float32, torch.float16, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 75
@staticmethod
def get_config_filenames() -> list[str]:
return ["config.json"]
@classmethod
def from_config(cls, config: dict[str, Any]) -> "TorchAOConfig":
"""Create the quant config from an hf model config"""
try:
from torchao.core.config import config_from_dict
except ImportError as err:
raise ImportError(
"Please install torchao>=0.10.0 via "
"`pip install torchao>=0.10.0` to use torchao quantization."
) from err
hf_config = cls.get_from_keys_or(config, ["quant_type"], None)
assert hf_config is not None, "quant_type must be specified"
assert len(hf_config) == 1 and "default" in hf_config, (
"Expected only one key 'default' in quant_type dictionary")
quant_type = hf_config["default"]
ao_config = config_from_dict(quant_type)
# Adds skipped modules defined in "modules_to_not_convert"
skip_modules = config.get("modules_to_not_convert", []) or []
# Adds skipped modules defined in "module_fqn_to_config"
_data = quant_type.get("_data", {})
if not isinstance(_data, dict):
_data = {}
module_fqn = _data.get("module_fqn_to_config", {})
if not isinstance(module_fqn, dict):
module_fqn = {}
for layer, layer_cfg in module_fqn.items():
if layer_cfg is None:
skip_modules.append(layer)
return cls(ao_config, skip_modules)
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
if not isinstance(layer, LinearBase):
return None
from torchao.quantization import ModuleFqnToConfig
if should_skip(prefix, self.skip_modules):
return UnquantizedLinearMethod()
module_fqn = prefix
if isinstance(self.torchao_config, ModuleFqnToConfig):
module_fqn_to_config = self.torchao_config.module_fqn_to_config
c = module_fqn_to_config.get(
module_fqn) or module_fqn_to_config.get("_default", None)
if c is not None:
current_torchao_config = TorchAOConfig(c, self.skip_modules)
return TorchAOLinearMethod(current_torchao_config)
else:
return UnquantizedLinearMethod()
return TorchAOLinearMethod(self)
def get_scaled_act_names(self) -> list[str]:
return []
def torchao_quantize_param_data(param: torch.Tensor,
torchao_config: Any) -> torch.nn.Parameter:
"""Quantize a Tensor with torchao quantization specified by torchao_config
Args:
`param`: weight parameter of the linear module
`torchao_config`: type of quantization and their arguments we want to
use to quantize the Tensor
"""
from torchao.core.config import AOBaseConfig
from torchao.quantization import quantize_
assert isinstance(torchao_config, AOBaseConfig), f"{torchao_config}"
"""
Avoid real weight allocation for faster load, since we will
end up setting it to param.
"""
with torch.device("meta"):
# linear can't be top level module since quantize_ is inplace
# while some of our configs need to do module swap, and only non-top
# level modules support module swap
dummy_linear = torch.nn.Sequential(
torch.nn.Linear(param.shape[1], param.shape[0], bias=False))
dummy_linear[0].weight = param
quantize_(dummy_linear, torchao_config)
return dummy_linear[0].weight
class TorchAOLinearMethod(LinearMethodBase):
"""Linear method for torchao.
Args:
torchao_config: The torchao quantization config, a string
that encodes the type of quantization and all relevant arguments.
"""
def __init__(self, quant_config: TorchAOConfig):
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
weight = Parameter(
torch.empty(
sum(output_partition_sizes),
input_size_per_partition,
dtype=params_dtype,
),
requires_grad=False,
)
weight = torchao_quantize_param_data(weight,
self.quant_config.torchao_config)
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
layer.register_parameter("weight", weight)
set_weight_attrs(weight, extra_weight_attrs)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return F.linear(x, layer.weight, bias)