Files
vllm/tests/kernels/moe/test_count_expert_num_tokens.py
2025-08-14 21:33:42 -06:00

140 lines
5.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Tests compute_expert_num_tokens kernels
"""
import dataclasses
from typing import Optional
import pytest
import torch
from vllm.model_executor.layers.fused_moe.utils import count_expert_num_tokens
@dataclasses.dataclass
class TestTensors:
topk_ids: torch.Tensor
expert_map: Optional[torch.Tensor] = None
def to_device(self, device: str):
self.topk_ids = self.topk_ids.to(device=device)
if self.expert_map is not None:
self.expert_map = self.expert_map.to(device=device)
@staticmethod
def make(num_tokens: int, num_topk: int, num_experts: int, device: str,
topk_ids_dtype: torch.dtype) -> "TestTensors":
# make topk ids
topk_ids = torch.empty((num_tokens, num_topk),
device=device,
dtype=torch.int64)
for x in range(num_tokens):
topk_ids[x] = torch.randperm(num_experts)[:num_topk]
topk_ids = topk_ids.to(dtype=torch.int64)
return TestTensors(topk_ids=topk_ids)
def with_ep_rank(self, ep_rank: int, num_global_experts: int,
num_local_experts: int, device: str):
# make an expert map
expert_map = torch.empty((num_global_experts),
device=device,
dtype=torch.int32)
expert_map.fill_(-1)
s = ep_rank * num_local_experts
e = s + num_local_experts
expert_map[s:e] = torch.tensor(list(range(num_local_experts)),
device=device)
return TestTensors(topk_ids=self.topk_ids.clone(),
expert_map=expert_map)
def ref_impl(tt: TestTensors, expert_num_tokens: torch.Tensor):
# do the reference in cpu
tt.to_device("cpu")
expert_ids, counts = tt.topk_ids.unique(return_counts=True)
for eid, count in zip(expert_ids, counts):
if eid != -1 and tt.expert_map is not None:
eid = tt.expert_map[eid]
if eid == -1:
continue
expert_num_tokens[eid] += count
def do_test_compute_expert_num_tokens(num_tokens: int, num_topk: int,
num_experts: int, ep_size: int,
topk_ids_dtype: torch.dtype):
assert num_topk <= num_experts
tt = TestTensors.make(num_tokens,
num_topk,
num_experts,
topk_ids_dtype=topk_ids_dtype,
device="cpu")
num_global_experts = num_experts
assert num_global_experts % ep_size == 0
num_local_experts = num_global_experts // ep_size
for ep_rank in range(ep_size):
tt_rank = tt.with_ep_rank(ep_rank, num_global_experts,
num_local_experts, "cpu")
ref_expert_num_tokens = torch.zeros((num_local_experts),
device="cpu",
dtype=torch.int32)
ref_impl(tt_rank, ref_expert_num_tokens)
ref_expert_num_tokens = ref_expert_num_tokens.to("cuda")
tt_rank.to_device("cuda")
# Test with expert_map
triton_expert_num_tokens_w_emap = count_expert_num_tokens(
tt_rank.topk_ids, num_local_experts, tt_rank.expert_map)
# Test without expert map
topk_ids = tt_rank.expert_map[tt_rank.topk_ids].to(topk_ids_dtype)
triton_expert_num_tokens_wo_emap = count_expert_num_tokens(
topk_ids, num_local_experts, expert_map=None)
torch.testing.assert_close(ref_expert_num_tokens,
triton_expert_num_tokens_w_emap,
atol=0,
rtol=0)
torch.testing.assert_close(ref_expert_num_tokens,
triton_expert_num_tokens_wo_emap,
atol=0,
rtol=0)
@pytest.mark.parametrize("num_tokens", [1, 4, 8, 11, 127, 128, 3333, 7317])
@pytest.mark.parametrize("num_topk", [2, 6, 8])
@pytest.mark.parametrize("num_experts", [64])
@pytest.mark.parametrize("ep_size", [1, 2, 4])
@pytest.mark.parametrize("topk_ids_dtype", [torch.int64])
def test_compute_expert_num_tokens(num_tokens: int, num_topk: int,
num_experts: int, ep_size: int,
topk_ids_dtype: torch.dtype):
do_test_compute_expert_num_tokens(num_tokens, num_topk, num_experts,
ep_size, topk_ids_dtype)
@pytest.mark.parametrize("numel", list(range(1, 8192, 111)))
@pytest.mark.parametrize("num_experts", [32])
@pytest.mark.parametrize("ep_size", [2])
@pytest.mark.parametrize("topk_ids_dtype", [torch.int64])
def test_compute_expert_num_tokens_from_numel(numel: int, num_experts: int,
ep_size: int,
topk_ids_dtype: torch.dtype):
do_test_compute_expert_num_tokens(num_tokens=numel,
num_topk=1,
num_experts=num_experts,
ep_size=ep_size,
topk_ids_dtype=topk_ids_dtype)