Files
vllm/tests/kernels/moe/modular_kernel_tools/profile_modular_kernel.py

128 lines
3.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import copy
from itertools import product
from typing import Any, Callable
import torch
from vllm.config import VllmConfig
from vllm.platforms import current_platform
from .common import Config, RankTensors, WeightTensors, make_modular_kernel
from .parallel_utils import ProcessGroupInfo, parallel_launch_with_config
def do_profile(fn: Callable,
fn_kwargs: dict[Any, Any],
pgi: ProcessGroupInfo,
config: Config,
num_warmups: int = 5):
for _ in range(num_warmups):
fn(**fn_kwargs)
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
with_stack=True,
record_shapes=True,
) as tprof:
fn(**fn_kwargs)
torch.cuda.synchronize(torch.cuda.current_device())
# TODO (varun): Add a descriptive trace file name
tprof.export_chrome_trace(
f"{config.torch_trace_dir_path}/m{config.M}_{pgi.rank}_trace.json")
def profile_modular_kernel(
pgi: ProcessGroupInfo,
vllm_config: VllmConfig,
config: Config,
weights: WeightTensors,
rank_tensors: RankTensors,
) -> None:
assert isinstance(config.Ms, int)
assert isinstance(config.topks, int)
# weights for rank
rank_weights = weights.slice_weights(pgi.rank, config.num_local_experts)
# make modular kernel
mk = make_modular_kernel(config, vllm_config, weights)
mk_kwargs = {
"hidden_states": rank_tensors.hidden_states,
"w1": rank_weights.w1,
"w2": rank_weights.w2,
"topk_weights": rank_tensors.topk_weights,
"topk_ids": rank_tensors.topk_ids,
"expert_map": rank_tensors.expert_map,
"w1_scale": rank_weights.w1_scale,
"w2_scale": rank_weights.w2_scale,
"a1_scale": rank_tensors.hidden_states_scale,
"global_num_experts": config.E,
"apply_router_weight_on_input": config.topk == 1,
}
do_profile(mk.forward, mk_kwargs, pgi, config)
def rank_worker(
pgi: ProcessGroupInfo,
vllm_config: VllmConfig,
cpu_group,
config: Config,
weights: WeightTensors,
):
current_platform.seed_everything(pgi.rank)
# sanity check
from vllm import envs
if config.fused_moe_chunk_size is not None:
assert config.fused_moe_chunk_size == envs.VLLM_FUSED_MOE_CHUNK_SIZE
# get weights to this device
weights.to_current_device()
Ms = config.Ms
assert isinstance(Ms, list)
TOPKs = config.topks
assert isinstance(TOPKs, list)
for m, topk in product(Ms, TOPKs):
print(f"Running m={m}, topk={topk} ...")
# override m and topk
cfgx = copy.deepcopy(config)
cfgx.Ms = m
cfgx.topks = topk
# inputs for rank
rank_tensors = RankTensors.make(cfgx, pgi)
profile_modular_kernel(pgi, vllm_config, cfgx, weights, rank_tensors)
def run(config: Config):
weights: WeightTensors = WeightTensors.make(config)
vllm_config, env_dict = config.make_env_data()
parallel_launch_with_config(config.world_size, rank_worker, vllm_config,
env_dict, config, weights)
if __name__ == '__main__':
from .cli_args import make_config, make_config_arg_parser
parser = make_config_arg_parser(description=(
"Run single prepare-finalize & fused-experts combination test"
"Example : python3 -m tests.kernels.moe.modular_kernel_tools.profile_modular_kernel " #noqa: E501
"--pf-type PplxPrepareAndFinalize --experts-type BatchedTritonExperts"
))
args = parser.parse_args()
assert args.torch_trace_dir_path is not None, (
"Please pass in a directory to store torch traces")
config = make_config(args)
run(config)