Files
vllm/vllm/model_executor/models/siglip.py
2024-12-04 18:11:08 +00:00

629 lines
22 KiB
Python

"""Implementation of SiglipVisionModel intended to be only used
within a vision language model."""
import math
from typing import Iterable, List, Optional, Set, Tuple, Union
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers import SiglipVisionConfig
from vllm.attention.layer import MultiHeadAttention
from vllm.config import ModelConfig
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.inputs import DecoderOnlyInputs, token_inputs
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.multimodal.utils import (cached_get_tokenizer,
consecutive_placeholder_ranges,
repeat_and_pad_placeholder_tokens,
resolve_visual_encoder_outputs)
from vllm.sequence import SequenceData
def get_siglip_patch_grid_length(*, image_size: int, patch_size: int) -> int:
# Since interpolation is applied, the image size need not be divisible
# assert image_size % patch_size == 0
return image_size // patch_size
def get_siglip_num_patches(*, image_size: int, patch_size: int) -> int:
grid_length = get_siglip_patch_grid_length(image_size=image_size,
patch_size=patch_size)
return grid_length * grid_length
def get_siglip_image_feature_size(hf_config: SiglipVisionConfig) -> int:
return get_siglip_num_patches(image_size=hf_config.image_size,
patch_size=hf_config.patch_size)
def get_max_siglip_image_tokens(hf_config: SiglipVisionConfig) -> int:
return get_siglip_image_feature_size(hf_config)
def dummy_seq_data_for_siglip(
hf_config: SiglipVisionConfig,
seq_len: int,
num_images: int,
*,
image_token_id: int,
image_feature_size_override: Optional[int] = None,
mm_key: str = "image",
):
if image_feature_size_override is None:
image_feature_size = get_siglip_image_feature_size(hf_config)
else:
image_feature_size = image_feature_size_override
return SequenceData.from_prompt_token_counts(
(image_token_id, image_feature_size * num_images),
(0, seq_len - image_feature_size * num_images),
), {
mm_key:
consecutive_placeholder_ranges(num_items=num_images,
item_size=image_feature_size)
}
def dummy_image_for_siglip(
hf_config: SiglipVisionConfig,
num_images: int,
*,
image_width_override: Optional[int] = None,
image_height_override: Optional[int] = None,
):
width = height = hf_config.image_size
if image_width_override is not None:
width = image_width_override
if image_height_override is not None:
height = image_height_override
image = Image.new("RGB", (width, height), color=0)
return {"image": image if num_images == 1 else [image] * num_images}
def dummy_video_for_siglip(
hf_config: SiglipVisionConfig,
num_frames: int,
num_videos: int = 1,
*,
image_width_override: Optional[int] = None,
image_height_override: Optional[int] = None,
):
pil_frame = dummy_image_for_siglip(
hf_config,
num_images=1,
image_width_override=image_width_override,
image_height_override=image_height_override)
np_frame = np.array(pil_frame["image"])
mm_data_per_video = np.repeat([np_frame], num_frames, axis=0)
video_data = [mm_data_per_video] * num_videos
mm_data = {"video": video_data}
return mm_data
def input_processor_for_siglip(
model_config: ModelConfig,
hf_config: SiglipVisionConfig,
inputs: DecoderOnlyInputs,
*,
image_token_id: int,
image_feature_size_override: Optional[Union[int, List[int]]] = None,
):
multi_modal_data = inputs.get("multi_modal_data")
if multi_modal_data is None or "image" not in multi_modal_data:
return inputs
if "multi_modal_placeholders" in inputs and "image" in inputs[
"multi_modal_placeholders"]:
# The inputs already have placeholders.
return inputs
tokenizer = cached_get_tokenizer(model_config.tokenizer)
if image_feature_size_override is None:
image_data = multi_modal_data["image"]
if isinstance(image_data, Image.Image):
image_feature_size = get_siglip_image_feature_size(hf_config)
elif isinstance(image_data, torch.Tensor):
num_images, image_feature_size, hidden_size = image_data.shape
else:
raise TypeError(f"Invalid image type: {type(image_data)}")
else:
image_feature_size = image_feature_size_override
new_prompt, new_token_ids, ranges = repeat_and_pad_placeholder_tokens(
tokenizer,
inputs.get("prompt"),
inputs["prompt_token_ids"],
placeholder_token_id=image_token_id,
repeat_count=image_feature_size,
)
# NOTE: Create a defensive copy of the original inputs
return token_inputs(prompt_token_ids=new_token_ids,
prompt=new_prompt,
multi_modal_data=multi_modal_data,
multi_modal_placeholders={"image": ranges})
# Adapted from https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/models/siglip/modeling_siglip.py#L249 # noqa
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches = (self.image_size // self.patch_size)**2
self.num_positions = self.num_patches
self.position_embedding = VocabParallelEmbedding(
self.num_positions, self.embed_dim)
self.register_buffer(
"position_ids",
torch.arange(self.num_positions, dtype=torch.int64).expand(
(1, -1)),
persistent=False,
)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int,
width: int) -> torch.Tensor:
"""
This method is an adapted method for SigLIP (due to SigLIP not having
class embedding unlike other ViTs) that allows the model to interpolate
the pre-trained position encodings such that it can be usable on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
position_embeddings = self.position_embedding.weight.unsqueeze(0)
num_patches = embeddings.shape[1]
num_positions = position_embeddings.shape[1]
if num_patches == num_positions and height == width:
return position_embeddings
dim = embeddings.shape[-1]
height = height // self.patch_size
width = width // self.patch_size
# we add a small number to avoid floating point error
# in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
height, width = height + 0.1, width + 0.1
patch_pos_embed = position_embeddings.reshape(
1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)),
dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
scale_factor=(
height / math.sqrt(num_positions),
width / math.sqrt(num_positions),
),
mode="bicubic",
align_corners=False,
)
if (int(height) != patch_pos_embed.shape[-2]
or int(width) != patch_pos_embed.shape[-1]):
raise ValueError("Width or height does not match with "
"the interpolated position embeddings")
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed
def forward(self,
pixel_values: torch.Tensor,
interpolate_pos_encoding: bool = False) -> torch.Tensor:
_, _, height, width = pixel_values.shape
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(
dtype=target_dtype)) # shape = [*, width, grid, grid]
embeddings = patch_embeds.flatten(2).transpose(1, 2)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(
embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(
self.position_ids)
return embeddings
class SiglipAttention(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(f"embed_dim must be divisible by num_heads (got "
"`embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads}).")
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.qkv_proj = QKVParallelLinear(
hidden_size=self.embed_dim,
head_size=self.head_dim,
total_num_heads=self.num_heads,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.out_proj = RowParallelLinear(
input_size=self.embed_dim,
output_size=self.embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
self.tp_size = get_tensor_model_parallel_world_size()
self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
self.attn = MultiHeadAttention(self.num_heads_per_partition,
self.head_dim, self.scale)
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
"""Input shape: Batch x Time x Channel"""
qkv_states, _ = self.qkv_proj(hidden_states)
query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
out = self.attn(query_states, key_states, value_states)
attn_output, _ = self.out_proj(out)
return attn_output, None
class SiglipMLP(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.activation_fn = get_act_fn(config.hidden_act)
# For quantization, we require the hidden size to be a multiple of 64
quantizable = (config.hidden_size % 64 == 0
and config.intermediate_size % 64 == 0)
self.fc1 = ColumnParallelLinear(
config.hidden_size,
config.intermediate_size,
quant_config=quant_config if quantizable else None,
prefix=f"{prefix}.fc1",
)
self.fc2 = RowParallelLinear(
config.intermediate_size,
config.hidden_size,
quant_config=quant_config if quantizable else None,
prefix=f"{prefix}.fc2",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class SiglipEncoderLayer(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = SiglipAttention(
config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self.layer_norm1 = nn.LayerNorm(self.embed_dim,
eps=config.layer_norm_eps)
self.mlp = SiglipMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.layer_norm2 = nn.LayerNorm(self.embed_dim,
eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
) -> Tuple[torch.Tensor, None]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, _ = self.self_attn(hidden_states=hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states, None
class SiglipEncoder(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
num_hidden_layers_override: Optional[int] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
if num_hidden_layers_override is None:
num_hidden_layers = config.num_hidden_layers
else:
num_hidden_layers = num_hidden_layers_override
self.layers = nn.ModuleList([
SiglipEncoderLayer(config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}")
for layer_idx in range(num_hidden_layers)
])
def forward(
self,
inputs_embeds: torch.Tensor,
return_all_hidden_states: bool,
) -> Union[torch.Tensor, list[torch.Tensor]]:
hidden_states_pool = []
hidden_states = inputs_embeds
for encoder_layer in self.layers:
hidden_states, _ = encoder_layer(hidden_states)
if return_all_hidden_states:
hidden_states_pool.append(hidden_states)
# If we have multiple feature sample layers, we return all hidden
# states in order and grab the ones we need by index.
if return_all_hidden_states:
return hidden_states_pool
return hidden_states
class SiglipMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
# TODO(ChristopherCho): Implement vLLM version of MultiheadAttention
self.attention = torch.nn.MultiheadAttention(
config.hidden_size, config.num_attention_heads, batch_first=True)
self.layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp")
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = residual + self.mlp(hidden_state)
return hidden_state[:, 0]
class SiglipVisionTransformer(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: Optional[bool] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder",
)
num_hidden_layers = config.num_hidden_layers
if len(self.encoder.layers) > config.num_hidden_layers:
raise ValueError(
f"The original encoder only has {num_hidden_layers} "
f"layers, but you requested {len(self.encoder.layers)} layers."
)
# If possible, skip post_layernorm to conserve memory
if require_post_norm is None:
require_post_norm = len(self.encoder.layers) == num_hidden_layers
if require_post_norm:
self.post_layernorm = nn.LayerNorm(embed_dim,
eps=config.layer_norm_eps)
else:
self.post_layernorm = None
self.use_head = (True if not hasattr(config, "vision_use_head") else
config.vision_use_head)
if self.use_head:
self.head = SiglipMultiheadAttentionPoolingHead(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.head",
)
def forward(
self,
pixel_values: torch.Tensor,
interpolate_pos_encoding: bool = True,
feature_sample_layers: Optional[list[int]] = None,
) -> torch.Tensor:
hidden_states = self.embeddings(
pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
)
return_all_hidden_states = feature_sample_layers is not None
# Produces either the last layer output or all of the hidden states,
# depending on if we have feature_sample_layers or not
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
return_all_hidden_states=return_all_hidden_states,
)
# Handle post-norm (if applicable) and stacks feature layers if needed
encoder_outputs = resolve_visual_encoder_outputs(
encoder_outputs, feature_sample_layers, self.post_layernorm,
self.config.num_hidden_layers)
# TODO: add this back when pooled_output is used in inference.
# if self.use_head:
# pooled_output = self.head(encoder_outputs)
return encoder_outputs
class SiglipVisionModel(nn.Module):
config_class = SiglipVisionConfig
main_input_name = "pixel_values"
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: Optional[bool] = None,
prefix: str = "",
) -> None:
super().__init__()
self.vision_model = SiglipVisionTransformer(
config,
quant_config,
num_hidden_layers_override=num_hidden_layers_override,
require_post_norm=require_post_norm,
prefix=f"{prefix}.vision_model",
)
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
def forward(
self,
pixel_values: torch.Tensor,
interpolate_pos_encoding: bool = False,
feature_sample_layers: Optional[list[int]] = None,
) -> torch.Tensor:
return self.vision_model(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
feature_sample_layers=feature_sample_layers,
)
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
layer_count = len(self.vision_model.encoder.layers)
for name, loaded_weight in weights:
# post_layernorm is optional in SiglipVisionModel
if (name.startswith("vision_model.post_layernorm")
and self.vision_model.post_layernorm is None):
continue
# omit layers when num_hidden_layers_override is set
if name.startswith("vision_model.encoder.layers"):
layer_idx = int(name.split(".")[3])
if layer_idx >= layer_count:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params