mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
708 lines
28 KiB
Python
708 lines
28 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import asyncio
|
|
import time
|
|
from collections.abc import AsyncGenerator, AsyncIterator
|
|
from collections.abc import Sequence as GenericSequence
|
|
from typing import cast
|
|
|
|
import jinja2
|
|
from fastapi import Request
|
|
|
|
from vllm.engine.protocol import EngineClient
|
|
from vllm.entrypoints.logger import RequestLogger
|
|
from vllm.entrypoints.openai.protocol import (
|
|
CompletionLogProbs,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
CompletionResponseChoice,
|
|
CompletionResponseStreamChoice,
|
|
CompletionStreamResponse,
|
|
ErrorResponse,
|
|
PromptTokenUsageInfo,
|
|
RequestResponseMetadata,
|
|
UsageInfo,
|
|
)
|
|
from vllm.entrypoints.openai.serving_engine import OpenAIServing, clamp_prompt_logprobs
|
|
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
|
from vllm.entrypoints.renderer import RenderConfig
|
|
from vllm.entrypoints.utils import get_max_tokens, should_include_usage
|
|
from vllm.inputs.data import EmbedsPrompt, TokensPrompt, is_embeds_prompt
|
|
from vllm.logger import init_logger
|
|
from vllm.logprobs import Logprob
|
|
from vllm.outputs import RequestOutput
|
|
from vllm.sampling_params import BeamSearchParams, SamplingParams
|
|
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
|
from vllm.utils import as_list
|
|
from vllm.utils.async_utils import merge_async_iterators
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class OpenAIServingCompletion(OpenAIServing):
|
|
def __init__(
|
|
self,
|
|
engine_client: EngineClient,
|
|
models: OpenAIServingModels,
|
|
*,
|
|
request_logger: RequestLogger | None,
|
|
return_tokens_as_token_ids: bool = False,
|
|
enable_prompt_tokens_details: bool = False,
|
|
enable_force_include_usage: bool = False,
|
|
log_error_stack: bool = False,
|
|
):
|
|
super().__init__(
|
|
engine_client=engine_client,
|
|
models=models,
|
|
request_logger=request_logger,
|
|
return_tokens_as_token_ids=return_tokens_as_token_ids,
|
|
log_error_stack=log_error_stack,
|
|
)
|
|
self.enable_prompt_tokens_details = enable_prompt_tokens_details
|
|
self.default_sampling_params = self.model_config.get_diff_sampling_param()
|
|
self.enable_force_include_usage = enable_force_include_usage
|
|
if self.default_sampling_params:
|
|
source = self.model_config.generation_config
|
|
source = "model" if source == "auto" else source
|
|
logger.info(
|
|
"Using default completion sampling params from %s: %s",
|
|
source,
|
|
self.default_sampling_params,
|
|
)
|
|
|
|
async def create_completion(
|
|
self,
|
|
request: CompletionRequest,
|
|
raw_request: Request | None = None,
|
|
) -> AsyncGenerator[str, None] | CompletionResponse | ErrorResponse:
|
|
"""Completion API similar to OpenAI's API.
|
|
|
|
See https://platform.openai.com/docs/api-reference/completions/create
|
|
for the API specification. This API mimics the OpenAI Completion API.
|
|
|
|
NOTE: Currently we do not support the following feature:
|
|
- suffix (the language models we currently support do not support
|
|
suffix)
|
|
"""
|
|
error_check_ret = await self._check_model(request)
|
|
if error_check_ret is not None:
|
|
return error_check_ret
|
|
|
|
# If the engine is dead, raise the engine's DEAD_ERROR.
|
|
# This is required for the streaming case, where we return a
|
|
# success status before we actually start generating text :).
|
|
if self.engine_client.errored:
|
|
raise self.engine_client.dead_error
|
|
|
|
# Return error for unsupported features.
|
|
if request.suffix is not None:
|
|
return self.create_error_response("suffix is not currently supported")
|
|
|
|
if request.echo and request.prompt_embeds is not None:
|
|
return self.create_error_response("Echo is unsupported with prompt embeds.")
|
|
|
|
if request.prompt_logprobs is not None and request.prompt_embeds is not None:
|
|
return self.create_error_response(
|
|
"prompt_logprobs is not compatible with prompt embeds."
|
|
)
|
|
|
|
request_id = f"cmpl-{self._base_request_id(raw_request, request.request_id)}"
|
|
created_time = int(time.time())
|
|
|
|
request_metadata = RequestResponseMetadata(request_id=request_id)
|
|
if raw_request:
|
|
raw_request.state.request_metadata = request_metadata
|
|
|
|
try:
|
|
lora_request = self._maybe_get_adapters(request)
|
|
|
|
if self.model_config.skip_tokenizer_init:
|
|
tokenizer = None
|
|
else:
|
|
tokenizer = await self.engine_client.get_tokenizer()
|
|
renderer = self._get_renderer(tokenizer)
|
|
|
|
engine_prompts = await renderer.render_prompt_and_embeds(
|
|
prompt_or_prompts=request.prompt,
|
|
prompt_embeds=request.prompt_embeds,
|
|
config=self._build_render_config(request),
|
|
)
|
|
except ValueError as e:
|
|
logger.exception("Error in preprocessing prompt inputs")
|
|
return self.create_error_response(str(e))
|
|
except TypeError as e:
|
|
logger.exception("Error in preprocessing prompt inputs")
|
|
return self.create_error_response(str(e))
|
|
except RuntimeError as e:
|
|
logger.exception("Error in preprocessing prompt inputs")
|
|
return self.create_error_response(str(e))
|
|
except jinja2.TemplateError as e:
|
|
logger.exception("Error in preprocessing prompt inputs")
|
|
return self.create_error_response(str(e))
|
|
|
|
# Extract data_parallel_rank from header (router can inject it)
|
|
data_parallel_rank = self._get_data_parallel_rank(raw_request)
|
|
|
|
|
|
# Schedule the request and get the result generator.
|
|
generators: list[AsyncGenerator[RequestOutput, None]] = []
|
|
try:
|
|
for i, engine_prompt in enumerate(engine_prompts):
|
|
prompt_text, prompt_token_ids, prompt_embeds = (
|
|
self._get_prompt_components(engine_prompt)
|
|
)
|
|
|
|
input_length = None
|
|
if prompt_token_ids is not None:
|
|
input_length = len(prompt_token_ids)
|
|
elif prompt_embeds is not None:
|
|
input_length = len(prompt_embeds)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
if self.default_sampling_params is None:
|
|
self.default_sampling_params = {}
|
|
|
|
max_tokens = get_max_tokens(
|
|
max_model_len=self.max_model_len,
|
|
request=request,
|
|
input_length=input_length,
|
|
default_sampling_params=self.default_sampling_params,
|
|
)
|
|
|
|
sampling_params: SamplingParams | BeamSearchParams
|
|
if request.use_beam_search:
|
|
sampling_params = request.to_beam_search_params(
|
|
max_tokens, self.default_sampling_params
|
|
)
|
|
else:
|
|
sampling_params = request.to_sampling_params(
|
|
max_tokens,
|
|
self.model_config.logits_processor_pattern,
|
|
self.default_sampling_params,
|
|
)
|
|
|
|
request_id_item = f"{request_id}-{i}"
|
|
|
|
self._log_inputs(
|
|
request_id_item,
|
|
engine_prompt,
|
|
params=sampling_params,
|
|
lora_request=lora_request,
|
|
)
|
|
|
|
trace_headers = (
|
|
None
|
|
if raw_request is None
|
|
else await self._get_trace_headers(raw_request.headers)
|
|
)
|
|
|
|
# Mypy inconsistently requires this second cast in different
|
|
# environments. It shouldn't be necessary (redundant from above)
|
|
# but pre-commit in CI fails without it.
|
|
engine_prompt = cast(EmbedsPrompt | TokensPrompt, engine_prompt)
|
|
if isinstance(sampling_params, BeamSearchParams):
|
|
generator = self.beam_search(
|
|
prompt=engine_prompt,
|
|
request_id=request_id,
|
|
params=sampling_params,
|
|
lora_request=lora_request,
|
|
)
|
|
else:
|
|
engine_request, tokenization_kwargs = await self._process_inputs(
|
|
request_id_item,
|
|
engine_prompt,
|
|
sampling_params,
|
|
lora_request=lora_request,
|
|
trace_headers=trace_headers,
|
|
priority=request.priority,
|
|
)
|
|
|
|
generator = self.engine_client.generate(
|
|
engine_request,
|
|
sampling_params,
|
|
request_id_item,
|
|
lora_request=lora_request,
|
|
trace_headers=trace_headers,
|
|
priority=request.priority,
|
|
prompt_text=prompt_text,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
data_parallel_rank=data_parallel_rank,
|
|
)
|
|
|
|
generators.append(generator)
|
|
except ValueError as e:
|
|
# TODO: Use a vllm-specific Validation Error
|
|
return self.create_error_response(str(e))
|
|
|
|
result_generator = merge_async_iterators(*generators)
|
|
|
|
model_name = self.models.model_name(lora_request)
|
|
num_prompts = len(engine_prompts)
|
|
|
|
# Similar to the OpenAI API, when n != best_of, we do not stream the
|
|
# results. Noting that best_of is only supported in V0. In addition,
|
|
# we do not stream the results when use beam search.
|
|
stream = (
|
|
request.stream
|
|
and (request.best_of is None or request.n == request.best_of)
|
|
and not request.use_beam_search
|
|
)
|
|
|
|
# Streaming response
|
|
if stream:
|
|
return self.completion_stream_generator(
|
|
request,
|
|
engine_prompts,
|
|
result_generator,
|
|
request_id,
|
|
created_time,
|
|
model_name,
|
|
num_prompts=num_prompts,
|
|
tokenizer=tokenizer,
|
|
request_metadata=request_metadata,
|
|
)
|
|
|
|
# Non-streaming response
|
|
final_res_batch: list[RequestOutput | None] = [None] * num_prompts
|
|
try:
|
|
async for i, res in result_generator:
|
|
final_res_batch[i] = res
|
|
|
|
for i, final_res in enumerate(final_res_batch):
|
|
assert final_res is not None
|
|
|
|
# The output should contain the input text
|
|
# We did not pass it into vLLM engine to avoid being redundant
|
|
# with the inputs token IDs
|
|
if final_res.prompt is None:
|
|
engine_prompt = engine_prompts[i]
|
|
final_res.prompt = (
|
|
None
|
|
if is_embeds_prompt(engine_prompt)
|
|
else engine_prompt.get("prompt")
|
|
)
|
|
|
|
final_res_batch_checked = cast(list[RequestOutput], final_res_batch)
|
|
|
|
response = self.request_output_to_completion_response(
|
|
final_res_batch_checked,
|
|
request,
|
|
request_id,
|
|
created_time,
|
|
model_name,
|
|
tokenizer,
|
|
request_metadata,
|
|
)
|
|
except asyncio.CancelledError:
|
|
return self.create_error_response("Client disconnected")
|
|
except ValueError as e:
|
|
# TODO: Use a vllm-specific Validation Error
|
|
return self.create_error_response(str(e))
|
|
|
|
# When user requests streaming but we don't stream, we still need to
|
|
# return a streaming response with a single event.
|
|
if request.stream:
|
|
response_json = response.model_dump_json()
|
|
|
|
async def fake_stream_generator() -> AsyncGenerator[str, None]:
|
|
yield f"data: {response_json}\n\n"
|
|
yield "data: [DONE]\n\n"
|
|
|
|
return fake_stream_generator()
|
|
|
|
return response
|
|
|
|
async def completion_stream_generator(
|
|
self,
|
|
request: CompletionRequest,
|
|
engine_prompts: list[TokensPrompt | EmbedsPrompt],
|
|
result_generator: AsyncIterator[tuple[int, RequestOutput]],
|
|
request_id: str,
|
|
created_time: int,
|
|
model_name: str,
|
|
num_prompts: int,
|
|
tokenizer: AnyTokenizer,
|
|
request_metadata: RequestResponseMetadata,
|
|
) -> AsyncGenerator[str, None]:
|
|
num_choices = 1 if request.n is None else request.n
|
|
previous_text_lens = [0] * num_choices * num_prompts
|
|
previous_num_tokens = [0] * num_choices * num_prompts
|
|
has_echoed = [False] * num_choices * num_prompts
|
|
num_prompt_tokens = [0] * num_prompts
|
|
num_cached_tokens = None
|
|
first_iteration = True
|
|
|
|
stream_options = request.stream_options
|
|
include_usage, include_continuous_usage = should_include_usage(
|
|
stream_options, self.enable_force_include_usage
|
|
)
|
|
|
|
try:
|
|
async for prompt_idx, res in result_generator:
|
|
prompt_token_ids = res.prompt_token_ids
|
|
prompt_logprobs = res.prompt_logprobs
|
|
|
|
if first_iteration:
|
|
num_cached_tokens = res.num_cached_tokens
|
|
first_iteration = False
|
|
|
|
prompt_text = res.prompt
|
|
if prompt_text is None:
|
|
engine_prompt = engine_prompts[prompt_idx]
|
|
prompt_text = (
|
|
None
|
|
if is_embeds_prompt(engine_prompt)
|
|
else engine_prompt.get("prompt")
|
|
)
|
|
|
|
# Prompt details are excluded from later streamed outputs
|
|
if prompt_token_ids is not None:
|
|
num_prompt_tokens[prompt_idx] = len(prompt_token_ids)
|
|
|
|
delta_token_ids: GenericSequence[int]
|
|
out_logprobs: GenericSequence[dict[int, Logprob] | None] | None
|
|
|
|
for output in res.outputs:
|
|
i = output.index + prompt_idx * num_choices
|
|
|
|
# Useful when request.return_token_ids is True
|
|
# Returning prompt token IDs shares the same logic
|
|
# with the echo implementation.
|
|
prompt_token_ids_to_return: list[int] | None = None
|
|
|
|
assert request.max_tokens is not None
|
|
if request.echo and not has_echoed[i]:
|
|
assert prompt_token_ids is not None
|
|
if request.return_token_ids:
|
|
prompt_text = ""
|
|
assert prompt_text is not None
|
|
if request.max_tokens == 0:
|
|
# only return the prompt
|
|
delta_text = prompt_text
|
|
delta_token_ids = prompt_token_ids
|
|
out_logprobs = prompt_logprobs
|
|
else:
|
|
# echo the prompt and first token
|
|
delta_text = prompt_text + output.text
|
|
delta_token_ids = [
|
|
*prompt_token_ids,
|
|
*output.token_ids,
|
|
]
|
|
out_logprobs = [
|
|
*(prompt_logprobs or []),
|
|
*(output.logprobs or []),
|
|
]
|
|
prompt_token_ids_to_return = prompt_token_ids
|
|
has_echoed[i] = True
|
|
else:
|
|
# return just the delta
|
|
delta_text = output.text
|
|
delta_token_ids = output.token_ids
|
|
out_logprobs = output.logprobs
|
|
|
|
# has_echoed[i] is reused here to indicate whether
|
|
# we have already returned the prompt token IDs.
|
|
if not has_echoed[i]:
|
|
prompt_token_ids_to_return = prompt_token_ids
|
|
has_echoed[i] = True
|
|
|
|
if (
|
|
not delta_text
|
|
and not delta_token_ids
|
|
and not previous_num_tokens[i]
|
|
):
|
|
# Chunked prefill case, don't return empty chunks
|
|
continue
|
|
|
|
if request.logprobs is not None:
|
|
assert out_logprobs is not None, "Did not output logprobs"
|
|
logprobs = self._create_completion_logprobs(
|
|
token_ids=delta_token_ids,
|
|
top_logprobs=out_logprobs,
|
|
num_output_top_logprobs=request.logprobs,
|
|
tokenizer=tokenizer,
|
|
initial_text_offset=previous_text_lens[i],
|
|
return_as_token_id=request.return_tokens_as_token_ids,
|
|
)
|
|
else:
|
|
logprobs = None
|
|
|
|
previous_text_lens[i] += len(output.text)
|
|
previous_num_tokens[i] += len(output.token_ids)
|
|
finish_reason = output.finish_reason
|
|
stop_reason = output.stop_reason
|
|
|
|
chunk = CompletionStreamResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=[
|
|
CompletionResponseStreamChoice(
|
|
index=i,
|
|
text=delta_text,
|
|
logprobs=logprobs,
|
|
finish_reason=finish_reason,
|
|
stop_reason=stop_reason,
|
|
prompt_token_ids=prompt_token_ids_to_return,
|
|
token_ids=(
|
|
as_list(output.token_ids)
|
|
if request.return_token_ids
|
|
else None
|
|
),
|
|
)
|
|
],
|
|
)
|
|
if include_continuous_usage:
|
|
prompt_tokens = num_prompt_tokens[prompt_idx]
|
|
completion_tokens = previous_num_tokens[i]
|
|
chunk.usage = UsageInfo(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
|
|
response_json = chunk.model_dump_json(exclude_unset=False)
|
|
yield f"data: {response_json}\n\n"
|
|
|
|
total_prompt_tokens = sum(num_prompt_tokens)
|
|
total_completion_tokens = sum(previous_num_tokens)
|
|
final_usage_info = UsageInfo(
|
|
prompt_tokens=total_prompt_tokens,
|
|
completion_tokens=total_completion_tokens,
|
|
total_tokens=total_prompt_tokens + total_completion_tokens,
|
|
)
|
|
|
|
if self.enable_prompt_tokens_details and num_cached_tokens:
|
|
final_usage_info.prompt_tokens_details = PromptTokenUsageInfo(
|
|
cached_tokens=num_cached_tokens
|
|
)
|
|
|
|
if include_usage:
|
|
final_usage_chunk = CompletionStreamResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=[],
|
|
usage=final_usage_info,
|
|
)
|
|
final_usage_data = final_usage_chunk.model_dump_json(
|
|
exclude_unset=False, exclude_none=True
|
|
)
|
|
yield f"data: {final_usage_data}\n\n"
|
|
|
|
# report to FastAPI middleware aggregate usage across all choices
|
|
request_metadata.final_usage_info = final_usage_info
|
|
|
|
except Exception as e:
|
|
# TODO: Use a vllm-specific Validation Error
|
|
data = self.create_streaming_error_response(str(e))
|
|
yield f"data: {data}\n\n"
|
|
yield "data: [DONE]\n\n"
|
|
|
|
def request_output_to_completion_response(
|
|
self,
|
|
final_res_batch: list[RequestOutput],
|
|
request: CompletionRequest,
|
|
request_id: str,
|
|
created_time: int,
|
|
model_name: str,
|
|
tokenizer: AnyTokenizer,
|
|
request_metadata: RequestResponseMetadata,
|
|
) -> CompletionResponse:
|
|
choices: list[CompletionResponseChoice] = []
|
|
num_prompt_tokens = 0
|
|
num_generated_tokens = 0
|
|
kv_transfer_params = None
|
|
last_final_res = None
|
|
for final_res in final_res_batch:
|
|
last_final_res = final_res
|
|
prompt_token_ids = final_res.prompt_token_ids
|
|
assert prompt_token_ids is not None
|
|
prompt_logprobs = clamp_prompt_logprobs(final_res.prompt_logprobs)
|
|
prompt_text = final_res.prompt
|
|
|
|
token_ids: GenericSequence[int]
|
|
out_logprobs: GenericSequence[dict[int, Logprob] | None] | None
|
|
|
|
for output in final_res.outputs:
|
|
assert request.max_tokens is not None
|
|
if request.echo:
|
|
if request.return_token_ids:
|
|
prompt_text = ""
|
|
assert prompt_text is not None
|
|
if request.max_tokens == 0:
|
|
token_ids = prompt_token_ids
|
|
out_logprobs = prompt_logprobs
|
|
output_text = prompt_text
|
|
else:
|
|
token_ids = [*prompt_token_ids, *output.token_ids]
|
|
|
|
if request.logprobs is None:
|
|
out_logprobs = None
|
|
else:
|
|
assert prompt_logprobs is not None
|
|
assert output.logprobs is not None
|
|
out_logprobs = [
|
|
*prompt_logprobs,
|
|
*output.logprobs,
|
|
]
|
|
|
|
output_text = prompt_text + output.text
|
|
else:
|
|
token_ids = output.token_ids
|
|
out_logprobs = output.logprobs
|
|
output_text = output.text
|
|
|
|
if request.logprobs is not None:
|
|
assert out_logprobs is not None, "Did not output logprobs"
|
|
logprobs = self._create_completion_logprobs(
|
|
token_ids=token_ids,
|
|
top_logprobs=out_logprobs,
|
|
tokenizer=tokenizer,
|
|
num_output_top_logprobs=request.logprobs,
|
|
return_as_token_id=request.return_tokens_as_token_ids,
|
|
)
|
|
else:
|
|
logprobs = None
|
|
|
|
choice_data = CompletionResponseChoice(
|
|
index=len(choices),
|
|
text=output_text,
|
|
logprobs=logprobs,
|
|
finish_reason=output.finish_reason,
|
|
stop_reason=output.stop_reason,
|
|
prompt_logprobs=final_res.prompt_logprobs,
|
|
prompt_token_ids=(
|
|
prompt_token_ids if request.return_token_ids else None
|
|
),
|
|
token_ids=(
|
|
as_list(output.token_ids) if request.return_token_ids else None
|
|
),
|
|
)
|
|
choices.append(choice_data)
|
|
|
|
num_generated_tokens += len(output.token_ids)
|
|
|
|
num_prompt_tokens += len(prompt_token_ids)
|
|
|
|
usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
completion_tokens=num_generated_tokens,
|
|
total_tokens=num_prompt_tokens + num_generated_tokens,
|
|
)
|
|
|
|
if (
|
|
self.enable_prompt_tokens_details
|
|
and last_final_res
|
|
and last_final_res.num_cached_tokens
|
|
):
|
|
usage.prompt_tokens_details = PromptTokenUsageInfo(
|
|
cached_tokens=last_final_res.num_cached_tokens
|
|
)
|
|
|
|
request_metadata.final_usage_info = usage
|
|
if final_res_batch:
|
|
kv_transfer_params = final_res_batch[0].kv_transfer_params
|
|
return CompletionResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=choices,
|
|
usage=usage,
|
|
kv_transfer_params=kv_transfer_params,
|
|
)
|
|
|
|
def _create_completion_logprobs(
|
|
self,
|
|
token_ids: GenericSequence[int],
|
|
top_logprobs: GenericSequence[dict[int, Logprob] | None],
|
|
num_output_top_logprobs: int,
|
|
tokenizer: AnyTokenizer,
|
|
initial_text_offset: int = 0,
|
|
return_as_token_id: bool | None = None,
|
|
) -> CompletionLogProbs:
|
|
"""Create logprobs for OpenAI Completion API."""
|
|
out_text_offset: list[int] = []
|
|
out_token_logprobs: list[float | None] = []
|
|
out_tokens: list[str] = []
|
|
out_top_logprobs: list[dict[str, float] | None] = []
|
|
|
|
last_token_len = 0
|
|
|
|
should_return_as_token_id = (
|
|
return_as_token_id
|
|
if return_as_token_id is not None
|
|
else self.return_tokens_as_token_ids
|
|
)
|
|
for i, token_id in enumerate(token_ids):
|
|
step_top_logprobs = top_logprobs[i]
|
|
if step_top_logprobs is None:
|
|
token = tokenizer.decode(token_id)
|
|
if should_return_as_token_id:
|
|
token = f"token_id:{token_id}"
|
|
|
|
out_tokens.append(token)
|
|
out_token_logprobs.append(None)
|
|
out_top_logprobs.append(None)
|
|
else:
|
|
step_token = step_top_logprobs[token_id]
|
|
|
|
token = self._get_decoded_token(
|
|
step_token,
|
|
token_id,
|
|
tokenizer,
|
|
return_as_token_id=should_return_as_token_id,
|
|
)
|
|
token_logprob = max(step_token.logprob, -9999.0)
|
|
|
|
out_tokens.append(token)
|
|
out_token_logprobs.append(token_logprob)
|
|
|
|
# makes sure to add the top num_output_top_logprobs + 1
|
|
# logprobs, as defined in the openai API
|
|
# (cf. https://github.com/openai/openai-openapi/blob/
|
|
# 893ba52242dbd5387a97b96444ee1c742cfce9bd/openapi.yaml#L7153)
|
|
out_top_logprobs.append(
|
|
{
|
|
# Convert float("-inf") to the
|
|
# JSON-serializable float that OpenAI uses
|
|
self._get_decoded_token(
|
|
top_lp[1],
|
|
top_lp[0],
|
|
tokenizer,
|
|
return_as_token_id=should_return_as_token_id,
|
|
): max(top_lp[1].logprob, -9999.0)
|
|
for i, top_lp in enumerate(step_top_logprobs.items())
|
|
if num_output_top_logprobs >= i
|
|
}
|
|
)
|
|
|
|
if len(out_text_offset) == 0:
|
|
out_text_offset.append(initial_text_offset)
|
|
else:
|
|
out_text_offset.append(out_text_offset[-1] + last_token_len)
|
|
last_token_len = len(token)
|
|
|
|
return CompletionLogProbs(
|
|
text_offset=out_text_offset,
|
|
token_logprobs=out_token_logprobs,
|
|
tokens=out_tokens,
|
|
top_logprobs=out_top_logprobs,
|
|
)
|
|
|
|
def _build_render_config(
|
|
self,
|
|
request: CompletionRequest,
|
|
max_input_length: int | None = None,
|
|
) -> RenderConfig:
|
|
max_input_tokens_len = self.max_model_len - (request.max_tokens or 0)
|
|
return RenderConfig(
|
|
max_length=max_input_tokens_len,
|
|
truncate_prompt_tokens=request.truncate_prompt_tokens,
|
|
add_special_tokens=request.add_special_tokens,
|
|
cache_salt=request.cache_salt,
|
|
needs_detokenization=bool(request.echo and not request.return_token_ids),
|
|
)
|