Files
vllm/tests/models/multimodal/generation/vlm_utils/model_utils.py
2025-06-04 04:49:20 -07:00

797 lines
29 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Common utility functions relating to different models that are useful
for manipulating the input / output of HF & vLLM test runners, which are
typically specific to a small subset of models.
"""
import types
from pathlib import PosixPath
from typing import Optional, Union
import numpy as np
import numpy.typing as npt
import pytest
import regex as re
import torch
from PIL.Image import Image
from transformers import (AutoConfig, AutoTokenizer, BatchFeature,
GenerationConfig, GenerationMixin)
from vllm.sequence import SampleLogprobs
from vllm.transformers_utils.tokenizer import patch_padding_side
from .....conftest import HfRunner, ImageAsset, ImageTestAssets
from .types import RunnerOutput
####### vLLM output processors functions
def blip2_vllm_to_hf_output(vllm_output: RunnerOutput,
model: str) -> RunnerOutput:
"""Sanitize vllm output [blip2 models] to be comparable with hf output."""
_, output_str, out_logprobs = vllm_output
hf_output_str = output_str + "\n"
tokenizer = AutoTokenizer.from_pretrained(model)
hf_output_ids = tokenizer.encode(hf_output_str)
assert hf_output_ids[0] == tokenizer.bos_token_id
hf_output_ids = hf_output_ids[1:]
return hf_output_ids, hf_output_str, out_logprobs
def fuyu_vllm_to_hf_output(vllm_output: RunnerOutput,
model: str) -> RunnerOutput:
"""Sanitize vllm output [fuyu models] to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
hf_output_str = output_str.lstrip() + "|ENDOFTEXT|"
return output_ids, hf_output_str, out_logprobs
def qwen_vllm_to_hf_output(
vllm_output: RunnerOutput,
model: str) -> tuple[list[int], str, Optional[SampleLogprobs]]:
"""Sanitize vllm output [qwen models] to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
hf_output_str = output_str + "<|endoftext|>"
return output_ids, hf_output_str, out_logprobs
def qwen2_vllm_to_hf_output(
vllm_output: RunnerOutput,
model: str) -> tuple[list[int], str, Optional[SampleLogprobs]]:
"""Sanitize vllm output [qwen2 models] to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
hf_output_str = output_str + "<|im_end|>"
return output_ids, hf_output_str, out_logprobs
def kimiv_vl_vllm_to_hf_output(
vllm_output: RunnerOutput,
model: str) -> tuple[list[int], str, Optional[SampleLogprobs]]:
"""Sanitize vllm output [kimi_vl models] to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
hf_output_str = output_str + "<|im_end|>[EOS]"
return output_ids, hf_output_str, out_logprobs
def llava_image_vllm_to_hf_output(vllm_output: RunnerOutput,
model: str) -> RunnerOutput:
config = AutoConfig.from_pretrained(model)
mm_token_id = config.image_token_index
return _llava_vllm_to_hf_output(vllm_output, model, mm_token_id)
def llava_video_vllm_to_hf_output(
vllm_output: RunnerOutput,
model: str) -> tuple[list[int], str, Optional[SampleLogprobs]]:
config = AutoConfig.from_pretrained(model)
mm_token_id = config.video_token_index
return _llava_vllm_to_hf_output(vllm_output, model, mm_token_id)
def _llava_vllm_to_hf_output(vllm_output: RunnerOutput, model: str,
mm_token_id: int) -> RunnerOutput:
"""Sanitize vllm output [Llava models] to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
tokenizer = AutoTokenizer.from_pretrained(model)
eos_token_id = tokenizer.eos_token_id
hf_output_ids = [
token_id for idx, token_id in enumerate(output_ids)
if token_id != mm_token_id or output_ids[idx - 1] != mm_token_id
]
assert output_str[0] == " "
hf_output_str = output_str[1:]
if hf_output_ids[-1] == eos_token_id:
hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
return hf_output_ids, hf_output_str, out_logprobs
def llava_onevision_hf_model_kwargs(model: str) -> dict:
"""Workaround to fix the sliding window issue in llava_onevision."""
config = AutoConfig.from_pretrained(model)
config.text_config.sliding_window = None
return config.to_dict()
def llava_onevision_vllm_to_hf_output(vllm_output: RunnerOutput,
model: str) -> RunnerOutput:
"""Sanitize vllm output [llava-onevision] to compare with hf output."""
output_ids, output_str, out_logprobs = vllm_output
config = AutoConfig.from_pretrained(model)
video_token_id = config.video_token_index
tokenizer = AutoTokenizer.from_pretrained(model)
eos_token_id = tokenizer.eos_token_id
hf_output_ids = [
token_id for idx, token_id in enumerate(output_ids)
if token_id != video_token_id or output_ids[idx - 1] != video_token_id
]
hf_output_str = output_str
if hf_output_ids[-1] == eos_token_id:
hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
return hf_output_ids, hf_output_str, out_logprobs
def mantis_vllm_to_hf_output(vllm_output: RunnerOutput,
model: str) -> RunnerOutput:
"""Sanitize vllm output [mantis] to compare with hf output."""
output_ids, output_str, out_logprobs = vllm_output
hf_output_str = output_str + "<|eot_id|>"
return output_ids, hf_output_str, out_logprobs
def phi3v_vllm_to_hf_output(vllm_output: RunnerOutput,
model: str) -> RunnerOutput:
"""Sanitize vllm output [phi3v] to be comparable with hf output."""
_, output_str, out_logprobs = vllm_output
output_str_without_image = re.sub(r"(<\|image_\d+\|>)+", "", output_str)
assert output_str_without_image[0] == " "
output_str_without_image = output_str_without_image[1:]
hf_output_str = output_str_without_image + "<|end|><|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model)
hf_output_ids = tokenizer.encode(output_str_without_image)
assert hf_output_ids[0] == 1
hf_output_ids = hf_output_ids[1:]
return hf_output_ids, hf_output_str, out_logprobs
def paligemma_vllm_to_hf_output(vllm_output: RunnerOutput,
model: str) -> RunnerOutput:
"""Sanitize vllm output to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
config = AutoConfig.from_pretrained(model)
image_token_id = config.image_token_index
tokenizer = AutoTokenizer.from_pretrained(model)
eos_token_id = tokenizer.eos_token_id
hf_output_ids = [
token_id for idx, token_id in enumerate(output_ids)
if token_id != image_token_id or output_ids[idx - 1] != image_token_id
]
hf_output_str = output_str
if hf_output_ids[-1] == eos_token_id:
hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
return hf_output_ids, hf_output_str, out_logprobs
####### Post-processors for HF outputs
def deepseekvl2_trunc_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
output_ids, output_str, out_logprobs = hf_output
if output_str.endswith("<end▁of▁sentence>"):
output_str = output_str.split("<end▁of▁sentence>")[0]
return output_ids, output_str, out_logprobs
def idefics3_trunc_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
output_ids, output_str, out_logprobs = hf_output
if output_str.endswith("<end_of_utterance>"):
output_str = output_str.split("<end_of_utterance>")[0]
return output_ids, output_str, out_logprobs
def smolvlm_trunc_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
# Based on Idefics3
return idefics3_trunc_hf_output(hf_output, model)
def minicpmv_trunc_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
output_ids, output_str, out_logprobs = hf_output
if output_str.endswith("<|eot_id|>"):
output_str = output_str.split("<|eot_id|>")[0]
return output_ids, output_str, out_logprobs
def minimax_vl_01_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
output_ids, output_str, out_logprobs = hf_output
if output_str.endswith("<end_of_sentence>"):
output_str = output_str.split("<end_of_sentence>")[0]
return output_ids, output_str, out_logprobs
def ultravox_trunc_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
output_ids, output_str, out_logprobs = hf_output
tokenizer = AutoTokenizer.from_pretrained(model)
eos_token_id = tokenizer.eos_token_id
eos_token = tokenizer.decode(eos_token_id)
if output_str.endswith(eos_token):
output_str = output_str.split(eos_token)[0]
return output_ids, output_str, out_logprobs
####### Functions for converting image assets to embeddings
def get_llava_embeddings(image_assets: ImageTestAssets):
return [asset.image_embeds for asset in image_assets]
####### Prompt path encoders for models that need models on disk
def qwen_prompt_path_encoder(
tmp_path: PosixPath, prompt: str,
assets: Union[list[ImageAsset], ImageTestAssets]) -> str:
"""Given a temporary dir path, export one or more image assets into the
tempdir & replace its contents with the local path to the string so that
the HF version of Qwen-VL can resolve the path and load the image in its
forward() call.
Args:
tmp_path: Tempdir for test under consideration.
prompt: Prompt with image placeholders.
assets: list of image assets whose len equals the num placeholders.
"""
# Ensure that the number of placeholders matches the number of assets;
# If this is not true, the test is probably written incorrectly.
assert prompt.count("<img></img>") == len(assets)
# Replace the placeholders with local paths to the exported assets
for asset in assets:
image_tmp_path = tmp_path / f"{asset.name}.jpg"
asset.pil_image.save(image_tmp_path)
prompt = prompt.replace(
"<img></img>",
f"<img>{image_tmp_path}</img>",
1,
)
return prompt
####### Model-specific HuggingFace runner patchers
def deepseekvl2_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for GLM4."""
hf_processor = hf_model.processor
def processor(*args, text="", images=None, **kwargs):
if isinstance(images, Image):
images = [images]
# inputs is a custom class instead of dict or BatchFeature
inputs = hf_processor(
*args,
prompt=text,
images=images,
**kwargs,
)
inputs = {
k: inputs[k]
for k in inputs.keys() # noqa
if k not in ("seq_lens", "sft_format")
}
return BatchFeature(data=inputs, tensor_type="pt")
hf_model.processor = processor
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.language.model.embed_tokens
return hf_model
def gemma3_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for Gemma 3."""
hf_processor = hf_model.processor
def processor(*args, **kwargs):
return hf_processor(*args, do_pan_and_scan=True, **kwargs)
hf_model.processor = processor
orig_generate = hf_model.model.generate
def _generate(self, *args, **kwargs):
# FIXME: https://github.com/huggingface/transformers/issues/38333
kwargs["disable_compile"] = True
return orig_generate(*args, **kwargs)
hf_model.model.generate = types.MethodType(_generate, hf_model.model)
return hf_model
def glm4v_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for GLM4V."""
hf_processor = hf_model.processor
patch_padding_side(hf_processor)
def processor(*args, text="", images=None, **kwargs):
if images is None:
return hf_processor(*args, **kwargs)
images = [images] if isinstance(images, Image) else images
contents = re.findall(
r"<\|begin_of_image\|><\|endoftext\|><\|end_of_image\|>(.*?)<\|assistant\|>",
text,
)
assert len(contents) == len(images)
return hf_processor.apply_chat_template(
[{
"role": "user",
"image": image,
"content": content
} for image, content in zip(images, contents)],
add_generation_prompt=True,
tokenize=True,
return_dict=True,
**kwargs,
)
hf_model.processor = processor
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.transformer.output_layer
return hf_model
def h2ovl_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for H2OVL."""
class H2OVLProcessor:
"""A simple processor for H2OVL models."""
def __init__(self, hf_runner: HfRunner):
self.num_image_token = hf_runner.model.num_image_token
self.tokenizer = hf_runner.tokenizer
self.config = AutoConfig.from_pretrained(hf_runner.model_name,
trust_remote_code=True)
self.vision_config = self.config.vision_config
self.use_thumbnail = self.config.use_thumbnail
self.use_msac = self.config.use_msac
self.min_num = self.config.min_dynamic_patch
self.max_num = self.config.max_dynamic_patch
self.image_size = self.vision_config.image_size
def __call__(self, text: str, images: Union[Image, list[Image]],
**kwargs):
# yapf: disable
from vllm.model_executor.models.h2ovl import (
IMG_CONTEXT, IMG_END, IMG_START, image_to_pixel_values_h2ovl)
# yapf: enable
images = [images] if isinstance(images, Image) else images
pixel_values = [
image_to_pixel_values_h2ovl(
image,
input_size=self.image_size,
min_num=self.min_num,
max_num=self.max_num,
use_thumbnail=self.use_thumbnail,
use_msac=self.use_msac,
) for image in images
]
num_patches_list = [
pixel_value.shape[0] for pixel_value in pixel_values
]
pixel_values = torch.cat(pixel_values, dim=0)
for num_patches in num_patches_list:
context_tokens = IMG_CONTEXT * self.num_image_token \
* num_patches
image_tokens = IMG_START + context_tokens + IMG_END
text = text.replace('<image>', image_tokens, 1)
prompt = self.tokenizer(text, return_tensors="pt")
prompt.update({"pixel_values": pixel_values})
return prompt
img_context_token_id = hf_model.tokenizer.convert_tokens_to_ids(
"<IMG_CONTEXT>")
hf_model.model.img_context_token_id = img_context_token_id
hf_model.processor = H2OVLProcessor(hf_model)
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.language_model.get_output_embeddings()
hf_model.model.generate = types.MethodType(_internvl_generate,
hf_model.model)
return hf_model
def skyworkr1v_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for SkyworkR1V."""
class SkyworkR1VProcessor:
"""A simple processor for SkyworkR1V."""
def __init__(self, hf_runner: HfRunner):
self.num_image_token = hf_runner.model.num_image_token
self.tokenizer = hf_runner.tokenizer
self.config = AutoConfig.from_pretrained(hf_runner.model_name,
trust_remote_code=True)
self.vision_config = self.config.vision_config
self.use_thumbnail = self.config.use_thumbnail
self.min_num = self.config.min_dynamic_patch
self.max_num = self.config.max_dynamic_patch
self.image_size = self.vision_config.image_size
def __call__(self, text: str, images: Union[Image, list[Image]],
**kwargs):
from vllm.model_executor.models.skyworkr1v import (
IMG_CONTEXT, IMG_END, IMG_START,
image_to_pixel_values_skyworkr1v)
images = [images] if isinstance(images, Image) else images
pixel_values = [
image_to_pixel_values_skyworkr1v(
image,
input_size=self.image_size,
min_num=self.min_num,
max_num=self.max_num,
use_thumbnail=self.use_thumbnail,
) for image in images
]
num_patches_list = [
pixel_value.shape[0] for pixel_value in pixel_values
]
pixel_values = torch.cat(pixel_values, dim=0)
for num_patches in num_patches_list:
context_tokens = IMG_CONTEXT * self.num_image_token \
* num_patches
image_tokens = IMG_START + context_tokens + IMG_END
text = text.replace('<image>', image_tokens, 1)
prompt = self.tokenizer(text, return_tensors="pt")
prompt.update({"pixel_values": pixel_values})
return prompt
img_context_token_id = hf_model.tokenizer.convert_tokens_to_ids(
"<IMG_CONTEXT>")
hf_model.model.img_context_token_id = img_context_token_id
hf_model.processor = SkyworkR1VProcessor(hf_model)
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.language_model.get_output_embeddings()
hf_model.model.generate = types.MethodType(_internvl_generate,
hf_model.model)
return hf_model
def internvl_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for InternVL."""
class InternVLProcessor:
"""A simple processor for InternVL2 which misses a processor."""
def __init__(self, hf_runner: HfRunner):
self.num_image_token = hf_runner.model.num_image_token
self.tokenizer = hf_runner.tokenizer
self.config = AutoConfig.from_pretrained(hf_runner.model_name,
trust_remote_code=True)
self.vision_config = self.config.vision_config
self.use_thumbnail = self.config.use_thumbnail
self.min_num = self.config.min_dynamic_patch
self.max_num = self.config.max_dynamic_patch
self.image_size = self.vision_config.image_size
def __call__(
self,
text: str,
images: Union[Image, list[Image]] = None,
videos: Union[npt.NDArray, list[npt.NDArray]] = None,
**kwargs,
):
from vllm.model_executor.models.internvl import (
IMG_CONTEXT, IMG_END, IMG_START,
image_to_pixel_values_internvl, video_to_pixel_values_internvl)
images = [images] if isinstance(images, Image) else images
videos = [videos] if isinstance(videos, np.ndarray) else videos
if images is not None:
pixel_values_images = [
image_to_pixel_values_internvl(
image,
input_size=self.image_size,
min_num=self.min_num,
max_num=self.max_num,
use_thumbnail=self.use_thumbnail,
) for image in images
]
num_patches_images = [
pixel_value.shape[0] for pixel_value in pixel_values_images
]
else:
pixel_values_images, num_patches_images = [], []
if videos is not None:
pixel_values_videos = [
video_to_pixel_values_internvl(
video,
input_size=self.image_size,
min_num=1,
max_num=1,
use_thumbnail=False,
) for video in videos
]
num_patches_videos = [
pixel_value.shape[0] for pixel_value in pixel_values_videos
]
else:
pixel_values_videos, num_patches_videos = [], []
pixel_values = []
while ("<image>" in text) or ("<video>" in text):
image_index = text.find("<image>")
video_index = text.find("<video>")
if image_index == -1 or (video_index > -1
and video_index < image_index):
num_patches = num_patches_videos.pop(0)
pixel_values.append(pixel_values_videos.pop(0))
context_tokens = IMG_START + \
IMG_CONTEXT * self.num_image_token + IMG_END
video_tokens = ''.join([
f'Frame{i+1}: {context_tokens}'
for i in range(num_patches)
])
text = text.replace('<video>', video_tokens, 1)
else:
num_patches = num_patches_images.pop(0)
pixel_values.append(pixel_values_images.pop(0))
context_tokens = IMG_CONTEXT * self.num_image_token \
* num_patches
image_tokens = IMG_START + context_tokens + IMG_END
text = text.replace('<image>', image_tokens, 1)
pixel_values = torch.cat(pixel_values, dim=0)
prompt = self.tokenizer(text, return_tensors="pt")
prompt.update({"pixel_values": pixel_values})
return prompt
img_context_token_id = hf_model.tokenizer.convert_tokens_to_ids(
"<IMG_CONTEXT>")
hf_model.model.img_context_token_id = img_context_token_id
hf_model.processor = InternVLProcessor(hf_model)
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.language_model.get_output_embeddings()
hf_model.model.generate = types.MethodType(_internvl_generate,
hf_model.model)
return hf_model
def _internvl_generate(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
**generate_kwargs,
) -> torch.LongTensor:
"""Generate method for InternVL2 model without fixed use_cache."""
assert self.img_context_token_id is not None
target_dtype = next(self.parameters()).dtype
vit_embeds = self.extract_feature(pixel_values.to(target_dtype))
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
forward_kwargs = dict(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
)
if getattr(self, "use_visual_token_mask", False):
visual_token_mask = selected.reshape(B, N, 1).to(input_embeds.dtype)
forward_kwargs["visual_token_mask"] = visual_token_mask
# e.g. InternVL2-2B
if not isinstance(self.language_model, GenerationMixin):
pytest.skip("HF impl is not compatible with current transformers")
outputs = self.language_model.generate(
**forward_kwargs,
**generate_kwargs,
)
return outputs
def mantis_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
from mantis.models.mllava import MLlavaProcessor
hf_model.processor = MLlavaProcessor.from_pretrained(hf_model.model_name)
orig_generate = hf_model.model.generate
tokenizer = hf_model.processor.tokenizer
def _generate(self, *args, **kwargs):
return orig_generate(
*args,
**kwargs,
eos_token_id=[
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
],
)
hf_model.model.generate = types.MethodType(_generate, hf_model.model)
return hf_model
def minicpmv_25_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
orig_generate = hf_model.model.generate
def _generate(
self,
*args,
input_ids=None,
pixel_values=None,
image_sizes=None,
image_bound=None,
tgt_sizes=None,
**kwargs,
):
model_inputs = {
"input_ids": input_ids,
"pixel_values": pixel_values,
"image_sizes": image_sizes,
"image_bound": image_bound,
"tgt_sizes": tgt_sizes,
}
for k in list(model_inputs.keys()):
if model_inputs[k] is None:
model_inputs.pop(k)
return orig_generate(model_inputs, *args, decode_text=False, **kwargs)
hf_model.model.generate = types.MethodType(_generate, hf_model.model)
return hf_model
def minicpmo_26_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
orig_generate = hf_model.model.generate
def _generate(self, *args, image_sizes=None, **kwargs):
return orig_generate(*args, decode_text=False, **kwargs)
hf_model.model.generate = types.MethodType(_generate, hf_model.model)
return hf_model
def minicpmv_26_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
orig_generate = hf_model.model.generate
def _generate(self, *args, image_sizes=None, **kwargs):
return orig_generate(*args, decode_text=False, **kwargs)
hf_model.model.generate = types.MethodType(_generate, hf_model.model)
return hf_model
def minimax_vl_01_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
orig_generate = hf_model.model.generate
def _generate(self, *args, image_sizes=None, **kwargs):
return orig_generate(*args, decode_text=False, **kwargs)
hf_model.model.generate = types.MethodType(_generate, hf_model.model)
return hf_model
def molmo_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for Molmo."""
hf_processor = hf_model.processor
def _processor(*args, **kwargs):
return hf_processor.process(*args, **kwargs)
hf_model.processor = _processor
def _generate(self, max_new_tokens=None, do_sample=None, **kwargs):
batch = {
k: kwargs.pop(k).unsqueeze(0)
for k in ("input_ids", "images", "image_input_idx", "image_masks")
if k in kwargs
}
batch = BatchFeature(batch).to(dtype=self.dtype)
return self.generate_from_batch(
batch,
generation_config=GenerationConfig(
max_new_tokens=max_new_tokens,
stop_strings="<|endoftext|>",
do_sample=do_sample,
),
**kwargs,
)
hf_model.model.generate = types.MethodType(_generate, hf_model.model)
return hf_model
def ovis_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for Ovis2."""
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.llm.get_output_embeddings()
def processor(*args, text="", images=None, **kwargs):
text_tokenizer = hf_model.model.get_text_tokenizer()
images = [images] if isinstance(images, Image) else images
prompt_start_and_end = {
"qwen2": ("<|im_start|>user\n", "<|im_end|>\n"),
"llama":
("<|start_header_id|>user<|end_header_id|>\n\n", "<|eot_id|>"),
"gemma2": ("<start_of_turn>user\n", "<end_of_turn>\n"),
}
for start, end in prompt_start_and_end.values():
if start in text and end in text:
text = text.split(start)[1].split(end)[0]
break
prompt, input_ids, pixel_values = hf_model.model.preprocess_inputs(
text_or_conversations=text, images=images)
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
inputs = {
"inputs": input_ids.unsqueeze(0),
"pixel_values": pixel_values.unsqueeze(0),
"attention_mask": attention_mask.unsqueeze(0),
}
return BatchFeature(data=inputs, tensor_type="pt")
hf_model.processor = processor
return hf_model
def qwen2_5_omni_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner for Qwen2.5-Omni."""
thinker = hf_model.model.thinker
thinker.get_output_embeddings = lambda: thinker.lm_head
hf_model.model = thinker
return hf_model