Files
vllm/tests/utils.py
2025-10-19 03:06:32 -07:00

1285 lines
40 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import contextlib
import copy
import functools
import importlib
import itertools
import json
import os
import random
import signal
import subprocess
import sys
import tempfile
import time
import warnings
from collections.abc import Callable, Iterable
from contextlib import ExitStack, contextmanager, suppress
from multiprocessing import Process
from pathlib import Path
from typing import Any, Literal
from unittest.mock import patch
import cloudpickle
import httpx
import openai
import pytest
import requests
import torch
import torch.nn.functional as F
from openai.types.completion import Completion
from typing_extensions import ParamSpec
import vllm.envs as envs
from tests.models.utils import TextTextLogprobs
from vllm.distributed import (
ensure_model_parallel_initialized,
init_distributed_environment,
)
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.entrypoints.cli.serve import ServeSubcommand
from vllm.model_executor.model_loader import get_model_loader
from vllm.platforms import current_platform
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.utils import (
FlexibleArgumentParser,
)
from vllm.utils.mem_constants import GB_bytes
from vllm.utils.network_utils import get_open_port
from vllm.utils.torch_utils import cuda_device_count_stateless
if current_platform.is_rocm():
from amdsmi import (
amdsmi_get_gpu_vram_usage,
amdsmi_get_processor_handles,
amdsmi_init,
amdsmi_shut_down,
)
@contextmanager
def _nvml():
try:
amdsmi_init()
yield
finally:
amdsmi_shut_down()
elif current_platform.is_cuda():
from vllm.third_party.pynvml import (
nvmlDeviceGetHandleByIndex,
nvmlDeviceGetMemoryInfo,
nvmlInit,
nvmlShutdown,
)
@contextmanager
def _nvml():
try:
nvmlInit()
yield
finally:
nvmlShutdown()
else:
@contextmanager
def _nvml():
yield
VLLM_PATH = Path(__file__).parent.parent
"""Path to root of the vLLM repository."""
class RemoteOpenAIServer:
DUMMY_API_KEY = "token-abc123" # vLLM's OpenAI server does not need API key
def _start_server(
self, model: str, vllm_serve_args: list[str], env_dict: dict[str, str] | None
) -> None:
"""Subclasses override this method to customize server process launch"""
env = os.environ.copy()
# the current process might initialize cuda,
# to be safe, we should use spawn method
env["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
if env_dict is not None:
env.update(env_dict)
serve_cmd = ["vllm", "serve", model, *vllm_serve_args]
print(f"Launching RemoteOpenAIServer with: {' '.join(serve_cmd)}")
self.proc: subprocess.Popen = subprocess.Popen(
serve_cmd,
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
)
def __init__(
self,
model: str,
vllm_serve_args: list[str],
*,
env_dict: dict[str, str] | None = None,
seed: int | None = 0,
auto_port: bool = True,
max_wait_seconds: float | None = None,
override_hf_configs: dict[str, Any] | None = None,
) -> None:
if auto_port:
if "-p" in vllm_serve_args or "--port" in vllm_serve_args:
raise ValueError(
"You have manually specified the port when `auto_port=True`."
)
# No need for a port if using unix sockets
if "--uds" not in vllm_serve_args:
# Don't mutate the input args
vllm_serve_args = vllm_serve_args + ["--port", str(get_open_port())]
if seed is not None:
if "--seed" in vllm_serve_args:
raise ValueError(
f"You have manually specified the seed when `seed={seed}`."
)
vllm_serve_args = vllm_serve_args + ["--seed", str(seed)]
if override_hf_configs is not None:
vllm_serve_args = vllm_serve_args + [
"--hf-overrides",
json.dumps(override_hf_configs),
]
parser = FlexibleArgumentParser(description="vLLM's remote OpenAI server.")
subparsers = parser.add_subparsers(required=False, dest="subparser")
parser = ServeSubcommand().subparser_init(subparsers)
args = parser.parse_args(["--model", model, *vllm_serve_args])
self.uds = args.uds
if args.uds:
self.host = None
self.port = None
else:
self.host = str(args.host or "127.0.0.1")
self.port = int(args.port)
self.show_hidden_metrics = args.show_hidden_metrics_for_version is not None
# download the model before starting the server to avoid timeout
is_local = os.path.isdir(model)
if not is_local:
engine_args = AsyncEngineArgs.from_cli_args(args)
model_config = engine_args.create_model_config()
load_config = engine_args.create_load_config()
model_loader = get_model_loader(load_config)
model_loader.download_model(model_config)
self._start_server(model, vllm_serve_args, env_dict)
max_wait_seconds = max_wait_seconds or 240
self._wait_for_server(url=self.url_for("health"), timeout=max_wait_seconds)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.proc.terminate()
try:
self.proc.wait(8)
except subprocess.TimeoutExpired:
# force kill if needed
self.proc.kill()
def _poll(self) -> int | None:
"""Subclasses override this method to customize process polling"""
return self.proc.poll()
def _wait_for_server(self, *, url: str, timeout: float):
# run health check
start = time.time()
client = (
httpx.Client(transport=httpx.HTTPTransport(uds=self.uds))
if self.uds
else requests
)
while True:
try:
if client.get(url).status_code == 200:
break
except Exception:
# this exception can only be raised by requests.get,
# which means the server is not ready yet.
# the stack trace is not useful, so we suppress it
# by using `raise from None`.
result = self._poll()
if result is not None and result != 0:
raise RuntimeError("Server exited unexpectedly.") from None
time.sleep(0.5)
if time.time() - start > timeout:
raise RuntimeError("Server failed to start in time.") from None
@property
def url_root(self) -> str:
return (
f"http://{self.uds.split('/')[-1]}"
if self.uds
else f"http://{self.host}:{self.port}"
)
def url_for(self, *parts: str) -> str:
return self.url_root + "/" + "/".join(parts)
def get_client(self, **kwargs):
if "timeout" not in kwargs:
kwargs["timeout"] = 600
return openai.OpenAI(
base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
max_retries=0,
**kwargs,
)
def get_async_client(self, **kwargs):
if "timeout" not in kwargs:
kwargs["timeout"] = 600
return openai.AsyncOpenAI(
base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
max_retries=0,
**kwargs,
)
class RemoteOpenAIServerCustom(RemoteOpenAIServer):
"""Launch test server with custom child process"""
def _start_server(
self, model: str, vllm_serve_args: list[str], env_dict: dict[str, str] | None
) -> None:
self.proc: Process = Process(
target=self.child_process_fxn, args=(env_dict, model, vllm_serve_args)
) # type: ignore[assignment]
self.proc.start()
def __init__(
self,
model: str,
vllm_serve_args: list[str],
child_process_fxn: Callable[[dict[str, str] | None, str, list[str]], None],
*,
env_dict: dict[str, str] | None = None,
seed: int | None = 0,
auto_port: bool = True,
max_wait_seconds: float | None = None,
) -> None:
"""Store custom child process function then invoke superclass
constructor which will indirectly launch it."""
self.child_process_fxn = child_process_fxn
super().__init__(
model=model,
vllm_serve_args=vllm_serve_args,
env_dict=env_dict,
seed=seed,
auto_port=auto_port,
max_wait_seconds=max_wait_seconds,
)
def _poll(self) -> int | None:
return self.proc.exitcode
def __exit__(self, exc_type, exc_value, traceback):
self.proc.terminate()
self.proc.join(8)
if self.proc.is_alive():
# force kill if needed
self.proc.kill()
def _test_completion(
client: openai.OpenAI,
model: str,
prompt: str,
token_ids: list[int],
):
results = []
# test with text prompt
completion = client.completions.create(
model=model, prompt=prompt, max_tokens=5, temperature=0.0
)
results.append(
{
"test": "single_completion",
"text": completion.choices[0].text,
"finish_reason": completion.choices[0].finish_reason,
"usage": completion.usage,
}
)
# test using token IDs
completion = client.completions.create(
model=model,
prompt=token_ids,
max_tokens=5,
temperature=0.0,
)
results.append(
{
"test": "token_ids",
"text": completion.choices[0].text,
"finish_reason": completion.choices[0].finish_reason,
"usage": completion.usage,
}
)
# test seeded random sampling
completion = client.completions.create(
model=model, prompt=prompt, max_tokens=5, seed=33, temperature=1.0
)
results.append(
{
"test": "seeded_sampling",
"text": completion.choices[0].text,
"finish_reason": completion.choices[0].finish_reason,
"usage": completion.usage,
}
)
# test seeded random sampling with multiple prompts
completion = client.completions.create(
model=model, prompt=[prompt, prompt], max_tokens=5, seed=33, temperature=1.0
)
results.append(
{
"test": "seeded_sampling",
"text": [choice.text for choice in completion.choices],
"finish_reason": [choice.finish_reason for choice in completion.choices],
"usage": completion.usage,
}
)
# test simple list
batch = client.completions.create(
model=model,
prompt=[prompt, prompt],
max_tokens=5,
temperature=0.0,
)
results.append(
{
"test": "simple_list",
"text0": batch.choices[0].text,
"text1": batch.choices[1].text,
}
)
# test streaming
batch = client.completions.create(
model=model,
prompt=[prompt, prompt],
max_tokens=5,
temperature=0.0,
stream=True,
)
texts = [""] * 2
for chunk in batch:
assert len(chunk.choices) == 1
choice = chunk.choices[0]
texts[choice.index] += choice.text
results.append(
{
"test": "streaming",
"texts": texts,
}
)
return results
def _test_completion_close(
client: openai.OpenAI,
model: str,
prompt: str,
):
results = []
# test with text prompt
completion = client.completions.create(
model=model, prompt=prompt, max_tokens=1, logprobs=5, temperature=0.0
)
logprobs = completion.choices[0].logprobs.top_logprobs[0]
logprobs = {k: round(v, 2) for k, v in logprobs.items()}
results.append(
{
"test": "completion_close",
"logprobs": logprobs,
}
)
return results
def _test_chat(
client: openai.OpenAI,
model: str,
prompt: str,
):
results = []
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}]
# test with text prompt
chat_response = client.chat.completions.create(
model=model, messages=messages, max_tokens=5, temperature=0.0
)
results.append(
{
"test": "completion_close",
"text": chat_response.choices[0].message.content,
"finish_reason": chat_response.choices[0].finish_reason,
"usage": chat_response.usage,
}
)
return results
def _test_embeddings(
client: openai.OpenAI,
model: str,
text: str,
):
results = []
# test with text input
embeddings = client.embeddings.create(
model=model,
input=text,
encoding_format="float",
)
results.append(
{
"test": "single_embedding",
"embedding": embeddings.data[0].embedding,
"usage": embeddings.usage,
}
)
return results
def _test_image_text(
client: openai.OpenAI,
model_name: str,
image_url: str,
):
results = []
# test pure text input
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "How do you feel today?"},
],
}
]
chat_completion = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.0,
max_tokens=1,
logprobs=True,
top_logprobs=5,
)
top_logprobs = chat_completion.choices[0].logprobs.content[0].top_logprobs
for x in top_logprobs:
x.logprob = round(x.logprob, 2)
results.append(
{
"test": "pure_text",
"logprobs": top_logprobs,
}
)
messages = [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "text", "text": "What's in this image?"},
],
}
]
chat_completion = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.0,
max_tokens=1,
logprobs=True,
top_logprobs=5,
)
top_logprobs = chat_completion.choices[0].logprobs.content[0].top_logprobs
results.append(
{
"test": "text_image",
"logprobs": top_logprobs,
}
)
return results
def compare_two_settings(
model: str,
arg1: list[str],
arg2: list[str],
env1: dict[str, str] | None = None,
env2: dict[str, str] | None = None,
*,
method: str = "generate",
max_wait_seconds: float | None = None,
) -> None:
"""
Launch API server with two different sets of arguments/environments
and compare the results of the API calls.
Args:
model: The model to test.
arg1: The first set of arguments to pass to the API server.
arg2: The second set of arguments to pass to the API server.
env1: The first set of environment variables to pass to the API server.
env2: The second set of environment variables to pass to the API server.
"""
compare_all_settings(
model,
[arg1, arg2],
[env1, env2],
method=method,
max_wait_seconds=max_wait_seconds,
)
def compare_all_settings(
model: str,
all_args: list[list[str]],
all_envs: list[dict[str, str] | None],
*,
method: str = "generate",
max_wait_seconds: float | None = None,
) -> None:
"""
Launch API server with several different sets of arguments/environments
and compare the results of the API calls with the first set of arguments.
Args:
model: The model to test.
all_args: A list of argument lists to pass to the API server.
all_envs: A list of environment dictionaries to pass to the API server.
"""
trust_remote_code = False
for args in all_args:
if "--trust-remote-code" in args:
trust_remote_code = True
break
tokenizer_mode = "auto"
for args in all_args:
if "--tokenizer-mode" in args:
tokenizer_mode = args[args.index("--tokenizer-mode") + 1]
break
tokenizer = get_tokenizer(
model,
trust_remote_code=trust_remote_code,
tokenizer_mode=tokenizer_mode,
)
can_force_load_format = True
for args in all_args:
if "--load-format" in args:
can_force_load_format = False
break
prompt = "Hello, my name is"
token_ids = tokenizer(prompt).input_ids
ref_results: list = []
for i, (args, env) in enumerate(zip(all_args, all_envs)):
if can_force_load_format:
# we are comparing the results and
# usually we don't need real weights.
# we force to use dummy weights by default,
# and it should work for most of the cases.
# if not, we can use VLLM_TEST_FORCE_LOAD_FORMAT
# environment variable to force the load format,
# e.g. in quantization tests.
args = args + ["--load-format", envs.VLLM_TEST_FORCE_LOAD_FORMAT]
compare_results: list = []
results = ref_results if i == 0 else compare_results
with RemoteOpenAIServer(
model, args, env_dict=env, max_wait_seconds=max_wait_seconds
) as server:
client = server.get_client()
# test models list
models = client.models.list()
models = models.data
served_model = models[0]
results.append(
{
"test": "models_list",
"id": served_model.id,
"root": served_model.root,
}
)
if method == "generate":
results += _test_completion(client, model, prompt, token_ids)
elif method == "generate_close":
results += _test_completion_close(client, model, prompt)
elif method == "generate_chat":
results += _test_chat(client, model, prompt)
elif method == "generate_with_image":
results += _test_image_text(
client,
model,
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
)
elif method == "encode":
results += _test_embeddings(client, model, prompt)
else:
raise ValueError(f"Unknown method: {method}")
if i > 0:
# if any setting fails, raise an error early
ref_args = all_args[0]
ref_envs = all_envs[0]
compare_args = all_args[i]
compare_envs = all_envs[i]
for ref_result, compare_result in zip(ref_results, compare_results):
ref_result = copy.deepcopy(ref_result)
compare_result = copy.deepcopy(compare_result)
if "embedding" in ref_result and method == "encode":
sim = F.cosine_similarity(
torch.tensor(ref_result["embedding"]),
torch.tensor(compare_result["embedding"]),
dim=0,
)
assert sim >= 0.999, (
f"Embedding for {model=} are not the same.\n"
f"cosine_similarity={sim}\n"
)
del ref_result["embedding"]
del compare_result["embedding"]
assert ref_result == compare_result, (
f"Results for {model=} are not the same.\n"
f"{ref_args=} {ref_envs=}\n"
f"{compare_args=} {compare_envs=}\n"
f"{ref_result=}\n"
f"{compare_result=}\n"
)
def init_test_distributed_environment(
tp_size: int,
pp_size: int,
rank: int,
distributed_init_port: str,
local_rank: int = -1,
) -> None:
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
init_distributed_environment(
world_size=pp_size * tp_size,
rank=rank,
distributed_init_method=distributed_init_method,
local_rank=local_rank,
)
ensure_model_parallel_initialized(tp_size, pp_size)
def multi_process_parallel(
monkeypatch: pytest.MonkeyPatch,
tp_size: int,
pp_size: int,
test_target: Any,
) -> None:
import ray
# Using ray helps debugging the error when it failed
# as compared to multiprocessing.
# NOTE: We need to set working_dir for distributed tests,
# otherwise we may get import errors on ray workers
# NOTE: Force ray not to use gitignore file as excluding, otherwise
# it will not move .so files to working dir.
# So we have to manually add some of large directories
os.environ["RAY_RUNTIME_ENV_IGNORE_GITIGNORE"] = "1"
ray.init(
runtime_env={
"working_dir": VLLM_PATH,
"excludes": [
"build",
".git",
"cmake-build-*",
"shellcheck",
"dist",
"ep_kernels_workspace",
],
}
)
distributed_init_port = get_open_port()
refs = []
for rank in range(tp_size * pp_size):
refs.append(
test_target.remote(
monkeypatch,
tp_size,
pp_size,
rank,
distributed_init_port,
),
)
ray.get(refs)
ray.shutdown()
@contextmanager
def error_on_warning(category: type[Warning] = Warning):
"""
Within the scope of this context manager, tests will fail if any warning
of the given category is emitted.
"""
with warnings.catch_warnings():
warnings.filterwarnings("error", category=category)
yield
def get_physical_device_indices(devices):
visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES")
if visible_devices is None:
return devices
visible_indices = [int(x) for x in visible_devices.split(",")]
index_mapping = {i: physical for i, physical in enumerate(visible_indices)}
return [index_mapping[i] for i in devices if i in index_mapping]
@_nvml()
def wait_for_gpu_memory_to_clear(
*,
devices: list[int],
threshold_bytes: int | None = None,
threshold_ratio: float | None = None,
timeout_s: float = 120,
) -> None:
assert threshold_bytes is not None or threshold_ratio is not None
# Use nvml instead of pytorch to reduce measurement error from torch cuda
# context.
devices = get_physical_device_indices(devices)
start_time = time.time()
while True:
output: dict[int, str] = {}
output_raw: dict[int, tuple[float, float]] = {}
for device in devices:
if current_platform.is_rocm():
dev_handle = amdsmi_get_processor_handles()[device]
mem_info = amdsmi_get_gpu_vram_usage(dev_handle)
gb_used = mem_info["vram_used"] / 2**10
gb_total = mem_info["vram_total"] / 2**10
else:
dev_handle = nvmlDeviceGetHandleByIndex(device)
mem_info = nvmlDeviceGetMemoryInfo(dev_handle)
gb_used = mem_info.used / 2**30
gb_total = mem_info.total / 2**30
output_raw[device] = (gb_used, gb_total)
output[device] = f"{gb_used:.02f}/{gb_total:.02f}"
print("gpu memory used/total (GiB): ", end="")
for k, v in output.items():
print(f"{k}={v}; ", end="")
print("")
if threshold_bytes is not None:
is_free = lambda used, total: used <= threshold_bytes / 2**30
threshold = f"{threshold_bytes / 2**30} GiB"
else:
is_free = lambda used, total: used / total <= threshold_ratio
threshold = f"{threshold_ratio:.2f}"
dur_s = time.time() - start_time
if all(is_free(used, total) for used, total in output_raw.values()):
print(
f"Done waiting for free GPU memory on devices {devices=} "
f"({threshold=}) {dur_s=:.02f}"
)
break
if dur_s >= timeout_s:
raise ValueError(
f"Memory of devices {devices=} not free after "
f"{dur_s=:.02f} ({threshold=})"
)
time.sleep(5)
_P = ParamSpec("_P")
def fork_new_process_for_each_test(func: Callable[_P, None]) -> Callable[_P, None]:
"""Decorator to fork a new process for each test function.
See https://github.com/vllm-project/vllm/issues/7053 for more details.
"""
@functools.wraps(func)
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> None:
# Make the process the leader of its own process group
# to avoid sending SIGTERM to the parent process
os.setpgrp()
from _pytest.outcomes import Skipped
# Create a unique temporary file to store exception info from child
# process. Use test function name and process ID to avoid collisions.
with (
tempfile.NamedTemporaryFile(
delete=False,
mode="w+b",
prefix=f"vllm_test_{func.__name__}_{os.getpid()}_",
suffix=".exc",
) as exc_file,
ExitStack() as delete_after,
):
exc_file_path = exc_file.name
delete_after.callback(os.remove, exc_file_path)
pid = os.fork()
print(f"Fork a new process to run a test {pid}")
if pid == 0:
# Parent process responsible for deleting, don't delete
# in child.
delete_after.pop_all()
try:
func(*args, **kwargs)
except Skipped as e:
# convert Skipped to exit code 0
print(str(e))
os._exit(0)
except Exception as e:
import traceback
tb_string = traceback.format_exc()
# Try to serialize the exception object first
exc_to_serialize: dict[str, Any]
try:
# First, try to pickle the actual exception with
# its traceback.
exc_to_serialize = {"pickled_exception": e}
# Test if it can be pickled
cloudpickle.dumps(exc_to_serialize)
except (Exception, KeyboardInterrupt):
# Fall back to string-based approach.
exc_to_serialize = {
"exception_type": type(e).__name__,
"exception_msg": str(e),
"traceback": tb_string,
}
try:
with open(exc_file_path, "wb") as f:
cloudpickle.dump(exc_to_serialize, f)
except Exception:
# Fallback: just print the traceback.
print(tb_string)
os._exit(1)
else:
os._exit(0)
else:
pgid = os.getpgid(pid)
_pid, _exitcode = os.waitpid(pid, 0)
# ignore SIGTERM signal itself
old_signal_handler = signal.signal(signal.SIGTERM, signal.SIG_IGN)
# kill all child processes
os.killpg(pgid, signal.SIGTERM)
# restore the signal handler
signal.signal(signal.SIGTERM, old_signal_handler)
if _exitcode != 0:
# Try to read the exception from the child process
exc_info = {}
if os.path.exists(exc_file_path):
with (
contextlib.suppress(Exception),
open(exc_file_path, "rb") as f,
):
exc_info = cloudpickle.load(f)
if (
original_exception := exc_info.get("pickled_exception")
) is not None:
# Re-raise the actual exception object if it was
# successfully pickled.
assert isinstance(original_exception, Exception)
raise original_exception
if (original_tb := exc_info.get("traceback")) is not None:
# Use string-based traceback for fallback case
raise AssertionError(
f"Test {func.__name__} failed when called with"
f" args {args} and kwargs {kwargs}"
f" (exit code: {_exitcode}):\n{original_tb}"
) from None
# Fallback to the original generic error
raise AssertionError(
f"function {func.__name__} failed when called with"
f" args {args} and kwargs {kwargs}"
f" (exit code: {_exitcode})"
) from None
return wrapper
def spawn_new_process_for_each_test(f: Callable[_P, None]) -> Callable[_P, None]:
"""Decorator to spawn a new process for each test function."""
@functools.wraps(f)
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> None:
# Check if we're already in a subprocess
if os.environ.get("RUNNING_IN_SUBPROCESS") == "1":
# If we are, just run the function directly
return f(*args, **kwargs)
import torch.multiprocessing as mp
with suppress(RuntimeError):
mp.set_start_method("spawn")
# Get the module
module_name = f.__module__
# Create a process with environment variable set
env = os.environ.copy()
env["RUNNING_IN_SUBPROCESS"] = "1"
with tempfile.TemporaryDirectory() as tempdir:
output_filepath = os.path.join(tempdir, "new_process.tmp")
# `cloudpickle` allows pickling complex functions directly
input_bytes = cloudpickle.dumps((f, output_filepath))
cmd = [sys.executable, "-m", f"{module_name}"]
returned = subprocess.run(
cmd, input=input_bytes, capture_output=True, env=env
)
# check if the subprocess is successful
try:
returned.check_returncode()
except Exception as e:
# wrap raised exception to provide more information
raise RuntimeError(
f"Error raised in subprocess:\n{returned.stderr.decode()}"
) from e
return wrapper
def create_new_process_for_each_test(
method: Literal["spawn", "fork"] | None = None,
) -> Callable[[Callable[_P, None]], Callable[_P, None]]:
"""Creates a decorator that runs each test function in a new process.
Args:
method: The process creation method. Can be either "spawn" or "fork".
If not specified, it defaults to "spawn" on ROCm and XPU
platforms and "fork" otherwise.
Returns:
A decorator to run test functions in separate processes.
"""
if method is None:
use_spawn = current_platform.is_rocm() or current_platform.is_xpu()
method = "spawn" if use_spawn else "fork"
assert method in ["spawn", "fork"], "Method must be either 'spawn' or 'fork'"
if method == "fork":
return fork_new_process_for_each_test
return spawn_new_process_for_each_test
def large_gpu_mark(min_gb: int) -> pytest.MarkDecorator:
"""
Get a pytest mark, which skips the test if the GPU doesn't meet
a minimum memory requirement in GB.
This can be leveraged via `@large_gpu_test` to skip tests in environments
without enough resources, or called when filtering tests to run directly.
"""
try:
if current_platform.is_cpu():
memory_gb = 0
else:
memory_gb = current_platform.get_device_total_memory() / GB_bytes
except Exception as e:
warnings.warn(
f"An error occurred when finding the available memory: {e}",
stacklevel=2,
)
memory_gb = 0
return pytest.mark.skipif(
memory_gb < min_gb,
reason=f"Need at least {min_gb}GB GPU memory to run the test.",
)
def large_gpu_test(*, min_gb: int):
"""
Decorate a test to be skipped if no GPU is available or it does not have
sufficient memory.
Currently, the CI machine uses L4 GPU which has 24 GB VRAM.
"""
mark = large_gpu_mark(min_gb)
def wrapper(f: Callable[_P, None]) -> Callable[_P, None]:
return mark(f)
return wrapper
def multi_gpu_marks(*, num_gpus: int):
"""Get a collection of pytest marks to apply for `@multi_gpu_test`."""
test_selector = pytest.mark.distributed(num_gpus=num_gpus)
test_skipif = pytest.mark.skipif(
cuda_device_count_stateless() < num_gpus,
reason=f"Need at least {num_gpus} GPUs to run the test.",
)
return [test_selector, test_skipif]
def multi_gpu_test(*, num_gpus: int):
"""
Decorate a test to be run only when multiple GPUs are available.
"""
marks = multi_gpu_marks(num_gpus=num_gpus)
def wrapper(f: Callable[_P, None]) -> Callable[_P, None]:
func = create_new_process_for_each_test()(f)
for mark in reversed(marks):
func = mark(func)
return func
return wrapper
async def completions_with_server_args(
prompts: list[str],
model_name: str,
server_cli_args: list[str],
num_logprobs: int | None,
max_wait_seconds: int = 240,
max_tokens: int | list = 5,
) -> list[Completion]:
"""Construct a remote OpenAI server, obtain an async client to the
server & invoke the completions API to obtain completions.
Args:
prompts: test prompts
model_name: model to spin up on the vLLM server
server_cli_args: CLI args for starting the server
num_logprobs: Number of logprobs to report (or `None`)
max_wait_seconds: timeout interval for bringing up server.
Default: 240sec
max_tokens: max_tokens value for each of the given input prompts.
if only one max_token value is given, the same value is used
for all the prompts.
Returns:
OpenAI Completion instance
"""
if isinstance(max_tokens, int):
max_tokens = [max_tokens] * len(prompts)
assert len(max_tokens) == len(prompts)
outputs = None
with RemoteOpenAIServer(
model_name, server_cli_args, max_wait_seconds=max_wait_seconds
) as server:
client = server.get_async_client()
outputs = [
client.completions.create(
model=model_name,
prompt=[p],
temperature=0,
stream=False,
max_tokens=max_tok,
logprobs=num_logprobs,
)
for p, max_tok in zip(prompts, max_tokens)
]
outputs = await asyncio.gather(*outputs)
assert outputs is not None, "Completion API call failed."
return outputs
def get_client_text_generations(completions: list[Completion]) -> list[str]:
"""Extract generated tokens from the output of a
request made to an Open-AI-protocol completions endpoint.
"""
assert all([len(x.choices) == 1 for x in completions])
return [x.choices[0].text for x in completions]
def get_client_text_logprob_generations(
completions: list[Completion],
) -> list[TextTextLogprobs]:
"""Operates on the output of a request made to an Open-AI-protocol
completions endpoint; obtains top-rank logprobs for each token in
each {class}`SequenceGroup`
"""
text_generations = get_client_text_generations(completions)
text = "".join(text_generations)
return [
(
text_generations,
text,
(None if x.logprobs is None else x.logprobs.top_logprobs),
)
for completion in completions
for x in completion.choices
]
def has_module_attribute(module_name, attribute_name):
"""
Helper function to check if a module has a specific attribute.
"""
try:
module = importlib.import_module(module_name)
return hasattr(module, attribute_name)
except ImportError:
return False
def get_attn_backend_list_based_on_platform() -> list[str]:
if current_platform.is_cuda():
return ["FLASH_ATTN", "TRITON_ATTN", "TREE_ATTN"]
elif current_platform.is_rocm():
attn_backend_list = ["TRITON_ATTN"]
try:
import aiter # noqa: F401
attn_backend_list.append("FLASH_ATTN")
except Exception:
print("Skip FLASH_ATTN on ROCm as aiter is not installed")
return attn_backend_list
elif current_platform.is_xpu():
return ["FLASH_ATTN", "TRITON_ATTN"]
else:
raise ValueError("Unsupported platform")
@contextmanager
def override_cutlass_fp8_supported(value: bool):
with patch(
"vllm.model_executor.layers.quantization.utils.w8a8_utils.cutlass_fp8_supported",
return_value=value,
):
yield
def prep_prompts(batch_size: int, ln_range: tuple[int, int] = (800, 1100)):
"""
Generate prompts which a bunch of assignments,
then asking for the value of one of them.
The prompt is just under 10k tokens; sliding window is 4k
so the answer is outside sliding window, but should still be correct.
Args:
batch_size: number of prompts to generate
ln_range: an argument to control the length of the prompt
"""
prompts: list[str] = []
answer: list[int] = []
indices: list[int] = []
random.seed(1)
for _ in range(batch_size):
idx = random.randint(30, 90)
indices.append(idx)
prompt = (
"```python\n# We set a number of variables, "
+ f"x{idx} will be important later\n"
)
ln = random.randint(*ln_range)
for k in range(30, ln):
v = random.randint(10, 99)
if k == idx:
answer.append(v)
prompt += f"x{k} = {v}\n"
prompt += f"# Now, we check the value of x{idx}:\n"
prompt += f"assert x{idx} == "
prompts.append(prompt)
return prompts, answer, indices
def check_answers(
indices: list[int], answer: list[int], outputs: list[str], accept_rate: float = 0.7
):
answer2 = [int(text[0:2].strip()) for text in outputs]
print(list(zip(indices, zip(answer, answer2))))
numok = 0
for a1, a2 in zip(answer, answer2):
if a1 == a2:
numok += 1
frac_ok = numok / len(answer)
print(f"Num OK: {numok}/{len(answer)} {frac_ok}")
assert frac_ok >= accept_rate
def flat_product(*iterables: Iterable[Any]):
"""
Flatten lists of tuples of the cartesian product.
Useful when we want to avoid nested tuples to allow
test params to be unpacked directly from the decorator.
Example:
flat_product([(1, 2), (3, 4)], ["a", "b"]) ->
[
(1, 2, "a"),
(1, 2, "b"),
(3, 4, "a"),
(3, 4, "b"),
]
"""
for element in itertools.product(*iterables):
normalized = (e if isinstance(e, tuple) else (e,) for e in element)
yield tuple(itertools.chain(*normalized))