mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
157 lines
5.2 KiB
Python
157 lines
5.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from dataclasses import dataclass
|
|
|
|
import pytest
|
|
|
|
from tests.models.utils import EmbedModelInfo
|
|
from vllm import PoolingParams
|
|
from vllm.config import ModelConfig, PoolerConfig
|
|
|
|
EMBEDDING_MODELS = [
|
|
EmbedModelInfo("intfloat/multilingual-e5-small", is_matryoshka=False),
|
|
EmbedModelInfo(
|
|
"Snowflake/snowflake-arctic-embed-m-v1.5",
|
|
is_matryoshka=True,
|
|
matryoshka_dimensions=[256],
|
|
),
|
|
]
|
|
|
|
classify_parameters = ["activation"]
|
|
embed_parameters = ["dimensions", "normalize"]
|
|
step_pooling_parameters = ["step_tag_id", "returned_token_ids"]
|
|
|
|
|
|
@dataclass()
|
|
class MockModelConfig:
|
|
pooler_config: PoolerConfig
|
|
|
|
|
|
def test_task():
|
|
pooling_params = PoolingParams()
|
|
pooling_params.verify(task="score")
|
|
|
|
pooling_params = PoolingParams(task="score")
|
|
pooling_params.verify(task="score")
|
|
|
|
with pytest.raises(ValueError):
|
|
pooling_params.verify(task="classify")
|
|
|
|
|
|
def test_embed():
|
|
task = "embed"
|
|
model_config = MockModelConfig(pooler_config=PoolerConfig(pooling_type="CLS"))
|
|
|
|
pooling_params = PoolingParams(normalize=None)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
pooling_params = PoolingParams(normalize=True)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
pooling_params = PoolingParams(normalize=False)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
invalid_parameters = classify_parameters + step_pooling_parameters
|
|
for p in invalid_parameters:
|
|
with pytest.raises(ValueError):
|
|
pooling_params = PoolingParams(**{p: True})
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
|
|
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
|
|
def test_embed_dimensions(model_info: EmbedModelInfo):
|
|
task = "embed"
|
|
model_config = ModelConfig(
|
|
model_info.name,
|
|
task="auto",
|
|
tokenizer=model_info.name,
|
|
tokenizer_mode="auto",
|
|
trust_remote_code=False,
|
|
seed=0,
|
|
dtype="float16",
|
|
)
|
|
|
|
pooling_params = PoolingParams(dimensions=None)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
with pytest.raises(ValueError):
|
|
pooling_params = PoolingParams(dimensions=1)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
if model_info.is_matryoshka:
|
|
assert model_info.matryoshka_dimensions is not None
|
|
pooling_params = PoolingParams(dimensions=model_info.matryoshka_dimensions[0])
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
|
|
@pytest.mark.parametrize("task", ["score", "classify"])
|
|
def test_classify(task):
|
|
model_config = MockModelConfig(pooler_config=PoolerConfig(pooling_type="CLS"))
|
|
|
|
pooling_params = PoolingParams(activation=None)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
pooling_params = PoolingParams(activation=True)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
pooling_params = PoolingParams(activation=False)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
invalid_parameters = embed_parameters + step_pooling_parameters
|
|
for p in invalid_parameters:
|
|
with pytest.raises(ValueError):
|
|
pooling_params = PoolingParams(**{p: True})
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
|
|
@pytest.mark.parametrize("pooling_type", ["ALL", "STEP"])
|
|
def test_token_embed(pooling_type: str):
|
|
task = "token_embed"
|
|
model_config = MockModelConfig(
|
|
pooler_config=PoolerConfig(pooling_type=pooling_type)
|
|
)
|
|
|
|
pooling_params = PoolingParams(normalize=None)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
pooling_params = PoolingParams(normalize=True)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
pooling_params = PoolingParams(normalize=False)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
invalid_parameters = classify_parameters
|
|
if pooling_type != "STEP":
|
|
invalid_parameters = classify_parameters + step_pooling_parameters
|
|
|
|
for p in invalid_parameters:
|
|
with pytest.raises(ValueError):
|
|
pooling_params = PoolingParams(**{p: True})
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
|
|
@pytest.mark.parametrize("pooling_type", ["ALL", "STEP"])
|
|
def test_token_classify(pooling_type: str):
|
|
task = "token_classify"
|
|
model_config = MockModelConfig(
|
|
pooler_config=PoolerConfig(pooling_type=pooling_type)
|
|
)
|
|
|
|
pooling_params = PoolingParams(activation=None)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
pooling_params = PoolingParams(activation=True)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
pooling_params = PoolingParams(activation=False)
|
|
pooling_params.verify(task=task, model_config=model_config)
|
|
|
|
invalid_parameters = embed_parameters
|
|
if pooling_type != "STEP":
|
|
invalid_parameters = embed_parameters + step_pooling_parameters
|
|
|
|
for p in invalid_parameters:
|
|
with pytest.raises(ValueError):
|
|
pooling_params = PoolingParams(**{p: True})
|
|
pooling_params.verify(task=task, model_config=model_config)
|